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1 INTRODUCTION

Traffic signal control in urban areas plays a pivotal role in managing transportation, reducing
congestion, and enhancing safety and sustainability (Grote et al., 2016). While traditional fixed-
timing systems struggle to adapt to changing traffic conditions, Adaptive Traffic Signal Control
(ATSC) systems use dynamic algorithms to adjust signal timings based on real-time data (El-
Tantawy et al., 2013, Wang et al., 2023a), aiming to optimize traffic flow and minimize delays.

Reinforcement Learning (RL) has emerged as a promising approach to enhancing ATSC sys-
tems. RL algorithms enable controllers to learn optimal policies by interacting with the environ-
ment. One notable RL-based ATSC framework is eMARLIN (Wang et al., 2023b). eMARLIN in-
troduces a lightweight distributive collaboration architecture, allowing a learned communication
signal to be transmitted between neighbouring intersections while conserving the communication
bandwidth.

However, a significant challenge in ATSC arises from partial observability (PO) in traffic
networks. Agents rely on local sensors that can fail to accurately report system states or restricted
by their maximum detection range. PO leads to uncertainty and complexity, hindering the
control effectiveness. To address this, eMARLIN+ (Wang et al., 2023c) extends eMARLIN
by incorporating historical information using a Long Short-Term Memory (LSTM) network. It
communicates abstracted local observation histories among agents, aiming to mitigate the effects
of partial observability and improve overall system performance. However, LSTM’s training
throughput poses challenges.

Transformers, known for their success in sequence modelling tasks, including natural language
processing (NLP), offer a promising alternative (Vaswani et al., 2017). This paper explores in-
tegrating Transformer-based controllers into eMARLIN systems to effectively address partial
observability. We propose strategies to enhance training efficiency and effectiveness, presenting
results on real-world scenarios and comparing with strong baselines. The Transformer-based
model demonstrates improved coordination capability by capturing significant events from his-
torical data for better control policies.
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2 TRANSFORMERS PRELIMINARIES

Figure 1 – The architecture
of a Transformer encoder
model.

Attention mechanisms in machine learning assign weights to fo-
cus on specific parts of inputs, providing powerful feature abstrac-
tion capabilities. Transformers (Vaswani et al., 2017) are a signif-
icant advancement, demonstrating strong performance across vari-
ous fields.

The Transformer encoder (Figure 1), a key component, intro-
duces two key innovations: positional encoding and the Transformer
block. Positional encoding, typically using sinusoidal functions, pro-
vides order awareness to the embedded inputs, allowing Transform-
ers to process sequences in parallel. This method is more scalable
and interpretable than traditional recurrent architectures, offering
a more efficient solution to long-term memory challenges.

The Transformer block’s central innovation is its scaled dot-
product attention mechanism, which calculates attention scores be-
tween linearly transformed input slices to produce a weighted com-
bination of features. Multiple attention heads enhance understand-
ing by focusing on different aspects of the input simultaneously.
This multi-head approach improves scalability and adaptability,
making Transformers highly effective for handling complex tasks
in various domains.

3 METHODOLOGY

3.1 The Underlying Model

eMARLIN+ (Wang et al., 2023c) is a distributed ATSC coordination algorithm based on the
Deep Q-Network (DQNs) (Mnih et al., 2013). It formulates the generic ATSC problem as a
Partially Observable MDP (POMDP), where state variables define network dynamics, and ob-
servations capture sensor data. To reduce the model complexity, eMARLIN+ factorizes the
POMDP by introducing a Dominance Relaxation assumption, prioritizing immediate neighbour-
hood influences over distant ones under second-level operation. This relaxation factorizes the
joint conditional distribution, that represents the global dynamics, and streamlines the model.
This relaxation allows eMARLIN+ agents to learn only from neighbouring information, rather
than the complex global data. Finally, eMARLIN+ decouples the global reward down to the
sum over individual intersection delays, decoupling the joint problem into separate learnable and
manageable sub-problems.

In this setting, each of the agents observes locally, receives a local reward, and maximizes
this surrogate target directly. The model is designed to be:

• States: The state of the system s ∈ S contains all the information related to the network,
including vehicle positions, velocities, traffic lights status, etc. This information in general
is hidden and defines the underlying dynamics of the problem.

• Observations: The local observation oi ∈ Oi directly sensed by an agent consists of the
count of vehicles and the count of queued vehicles (driving below a threshold speed, 2 m/s
used in this work) in each incoming lane within the detection range, as well as the current
phase index and its elapsed duration.

• Actions: The action ai ∈ Ai represents the desired phase in the next time-step. The
traffic light EXTENDs the current phase if it is the same as the action, or CHANGEs to
the selected phase by going through the corresponding yellow change and red clearance
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intervals. A policy constraint permits only those valid transitions under the standard
NEMA two-ring-two-barrier scheme (Wang et al., 2023b). Minimum and maximum green
time constraints are also applied.

• Rewards: The local reward ri ∈ Ri is the agent sensed total queue length at the intersection.

3.2 eMARLIN-Transformer

Figure 2 – The architecture of Encoder
in eMARLIN-Transformer.

To address partial observability caused by sensor limi-
tations, we propose eMARLIN-Transformer, an integra-
tion of Transformers into the eMARLIN architecture.
This extension replaces the fully connected network in
the eMARLIN Encoder with a Transformer-based de-
sign and augments input with observation history. Un-
like eMARLIN+, which uses LSTM and relies on re-
current hidden states, eMARLIN-Transformer leverages
attention mechanisms for parallelized computations, im-
proving efficiency and capturing temporal information
more effectively. Note that for isolated intersections,
eMARLIN-Transformer operates as DQN-Transformer.

3.3 Implementation details

RL and Transformers offer potential in traffic manage-
ment tasks but face challenges like high memory usage
and latency. To stabilize Transformer learning for ATSC, selecting a proper model structure is
crucial (Figure 2).

Handling historical information in Transformers requires careful data order and alignment.
Our approach involves randomly selecting a recorded episode and a time slice from the replay
buffer, retrieving the history up to a certain length. To maintain semantic alignment, we reverse
sampled sequences before padding and positional encoding, emphasizing the current time slice.

Padding with zeros can confuse learning agents, as zeros might represent either padding or
a zero-valued feature. To address this, we use padding masking, which ensures that attention
mechanisms do not misinterpret padded sequences. This masking technique is also applied at
the pooling layer after the attention block to ensure clarity throughout the learning process.

4 RESULTS

We modelled a neighbourhood surrounding the intersection of Yonge Street and Steeles Avenue in
Toronto, Canada using the Aimsun simulator. City signal timing plans, obtained from Toronto,
follow the standard NEMA scheme with semi-actuated control (FHWA, 2007). RL agents run
on five intersections along Yonge Street, while the remaining follow city signal timing plans.

The results in Table 1 highlights the effectiveness of eMARLIN-Transformer in coordination
performance compared to other methods. Specifically, eMARLIN-Transformer reduces delay
time by 65.8% compared to a semi-actuated city plan, indicating a substantial improvement in
traffic flow.

When compared to the naive eMARLIN, which does not attempt to address the PO is-
sue, eMARLIN-Transformer achieves a 30.8% improvement in delay time, demonstrating the
importance of accounting for sensing limitations and utilizing historical data. Additionally,
eMARLIN-Transformer outperforms eMARLIN-LSTM, the previous state-of-the-art approach
that uses LSTM to handle sequential data, with 16.6% greater delay time savings, underscoring
the advantages of Transformer-based models in addressing PO issues.
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Table 1 – eMARLIN-Transformer outperforms all baselines on the Toronto test-bed. Numbers
reported in the table are the episodic delay (s) of each intersection.

North2 North1 Yonge-Steeles South1 South2 Sum
City plan 2,120 77,222 465,500 6,091 49,965 600,898
PressLight 23,590 101,091 276,824 60,180 115,070 576,755

DQN 7,169 61,029 197,544 40,999 50,288 357,029
eMARLIN 1,027 60,800 174,464 8,174 48,170 292,635

DQN-LSTM 1,134 65,033 155,048 4,499 38,406 264,120
eMARLIN-LSTM 1,407 51,228 156,408 3,996 29,706 242,745

eMARLIN-Transformer 1,416 40,491 136,731 4,126 22,747 205,511

These results underscore the Transformer’s capacity to capture sequential information from
historical observations, enhancing multi-agent collaboration in ATSC, leading to more efficient
traffic management and reduced congestion.

5 CONCLUSION AND DISCUSSION

In this work, we presented Transformers as an alternative encoder for capturing sequential in-
formation in traffic scenarios, providing advantages over LSTM networks, particularly in han-
dling PO. We integrated Transformers into the eMARLIN architecture to create eMARLIN-
Transformer. The implementation details were discussed, highlighting the Transformer’s im-
proved performance compared to other RL baselines. Experiments in the North York test-bed
demonstrated that the Transformer-based encoder effectively addresses PO issues, enhances agent
coordination, and leads to better control performance.
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