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1     INTRODUCTION 
 
Jointly optimizing the signal timing plans and CAV trajectories can enhance intersection control. 
However, a fully CAV fleet enables using signal-head-free control logic that can lead to the 
maximum capacity of the intersection (Dresner & Stone, 2008; Mirheli et al., 2019; Vitale et al., 
2022). Most of the available studies on CAV trajectory optimization at signal-head-free intersections 
require either the execution of a centralized controller solving an optimization problem or distributed 
vehicle-level optimization by CAVs. This assumes the availability of powerful computational 
resources onboard vehicles or at the central intersection controller. Moreover, although some of the 
available studies can provide CAV trajectories in real-time, they are not fast enough to be solved 
multiple times within one trajectory updating time step length to consider communication delays or 
to be used in network-level trajectory optimization frameworks. This study proposes a greedy-based 
heuristic method to construct CAV trajectories at signal-head-free intersections that not only does 
not use a computationally expensive solver but also provides solutions in the order of milliseconds 
to be used in network-level trajectory optimization frameworks. This methodology constructs 
multiple trajectories for each CAV and selects the one with the best objective value. In addition, a 
platooning logic is developed to form platoons consisting of one or more CAVs based on their 
relative locations and operate platoons of CAVs instead of individual CAVs at a time to achieve 
lower delay times. The proposed greedy-based solution technique is embedded in a receding horizon 
framework to further decrease the complexity of the problem and address its dynamic nature. 

 

2     Methodology 
 
We introduce a greedy-based solution technique to solve the CAV trajectory optimization problem 
for isolated signal-free intersections based on the formulation introduced by Mirheli et al. (2018). 
The proposed optimization model and solution technique are also embedded into a receding horizon 
framework to both reduce the complexity of the problem by repeatedly solving it over shorter periods 
and account for its dynamic nature. The proposed greedy-based heuristic constructs multiple 
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trajectories for each CAV and selects the one with the best objective value to be implemented. We 
construct CAV trajectories using three acceleration rates 𝑎𝑎𝑖𝑖𝑖𝑖𝑡𝑡  consisting of a maximum acceleration 
rate 𝑎𝑎  for speeding up, a minimum acceleration rate 𝑎𝑎  for slowing down, and 0  for keeping a 
constant speed.  
 
A trajectory for CAV 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙  on lane 𝑙𝑙 ∈ 𝐿𝐿 is constructed using the algorithm shown in Figure 1, 
which consists of four stages, namely initial acceleration, accident prevention via acceleration 
removal, accident prevention via deceleration, and speeding up. The initial acceleration stage 
speeds up the CAV to its maximum speed so that it does not miss any available time slot at the 
conflicting zone of the intersection. If the current trajectory meets the safety constraints, then it is 
optimal in terms of individual vehicle delay. Otherwise, the accident prevention via acceleration 
removal stage is activated to ensure the safety constraints by eliminating the positive acceleration 
rates set by the initial acceleration stage. If removing the positive acceleration rates could not 
prevent the violation of the safety constraints, the accident prevention via deceleration stage sets 
deceleration rates with the value of 𝑎𝑎 to satisfy the safety constraints. If the accident prevention via 
deceleration stage cannot satisfy the safety constraints, the algorithm stops due to infeasibility. 
Otherwise, the current trajectory is feasible, but may be still sub-optimal. Therefore, the speeding 
up stage starts from the first time step and sets positive acceleration rates if it does not lead to a 
safety constraint violation. Then moves to the next time step and repeats this process until it reaches 
the last time step or the CAV has reached its maximum speed. Note that the accident prevention via 
deceleration stage can be done with different starting times (𝜇𝜇) to construct multiple trajectories for 
the CAV, which is done in parallel. 
 

 
Figure 1 – The proposed greedy heuristic for CAV 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿. 

- Red oval indicates termination caused by infeasibility, 
- Green oval indicates successful trajectory construction. 

 
We introduce a combination of FIFO prioritization and platooning logic to determine the orders of 
processing CAVs from conflicting lane groups. We assume that the intersection controller records 
the time that each CAV enters the coordination area of the intersection and saves it in variable 𝑒𝑒𝑖𝑖𝑖𝑖 
for CAV 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿. In addition, a minimum headway 𝛿𝛿 and maximum number of platoon 
members 𝑃𝑃 is set at the first step of the algorithm. The algorithm finds CAV 𝑗𝑗 = 𝑖𝑖 ∈ 𝐼𝐼𝑙𝑙 on lane 𝑙𝑙 ∈ 𝐿𝐿 
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with the least 𝑒𝑒𝑖𝑖𝑖𝑖 value and constructs a trajectory for it. Then, it constructs a trajectory for CAV 𝑖𝑖 =
𝑖𝑖 + 1 on the same lane and keeps the trajectory if the headway between CAV 𝑖𝑖 and 𝑖𝑖 − 1 at the last 
time step of the current planning time horizon and the number of platoon members do not exceed 

their predefined values, i.e. 
𝑥𝑥𝑖𝑖−1,𝑙𝑙
𝑡𝑡0+𝑁𝑁� /∆𝑇𝑇−𝑥𝑥𝑖𝑖𝑖𝑖

𝑡𝑡0+𝑁𝑁� /∆𝑇𝑇

𝑣𝑣𝑖𝑖𝑖𝑖
𝑡𝑡0+𝑁𝑁� /∆𝑇𝑇 ≤ 𝛿𝛿  and 𝑖𝑖 − 𝑗𝑗 + 1 ≤ 𝑃𝑃 . Otherwise, the algorithm 

disregards the constructed trajectory and moves forward with the next CAV with the least 𝑒𝑒𝑖𝑖𝑖𝑖 value. 
This process continues until it constructs trajectories for all vehicles in the intersection 
neighborhood. Detailed steps of the algorithm are shown in Figure 7. 
 

1. Initialization: 
1.1.  set values for 𝑒𝑒𝑖𝑖𝑖𝑖, 𝛿𝛿, and 𝑃𝑃. 
1.2.  set 𝐼𝐼𝑙𝑙′ = 𝐼𝐼𝑙𝑙 and 𝜏𝜏 = 𝑡𝑡0 + 𝑁𝑁�/∆𝑇𝑇 

2. Loop until 𝑰𝑰𝒍𝒍′ = ∅      ∀ 𝒍𝒍 ∈ 𝑳𝑳 
2.1. FIFO:  

2.1.1.  set (𝑖𝑖, 𝑙𝑙) = {(𝑖𝑖′, 𝑙𝑙′)|𝑒𝑒𝑖𝑖′𝑙𝑙′ ≤ 𝑒𝑒𝑖𝑖′′𝑙𝑙′′ ,   ∀ (𝑖𝑖′′, 𝑙𝑙′′) ∈ (𝐼𝐼𝑙𝑙′ , 𝐿𝐿)} 
2.1.2.  set 𝑗𝑗 = 𝑖𝑖 and 𝐼𝐼𝑙𝑙′ = 𝐼𝐼𝑙𝑙′\{𝑖𝑖} 

2.2. Platooning:  
2.2.1.  set 𝑖𝑖 = 𝑖𝑖 + 1 
2.2.2.  if 𝑖𝑖 ∉ 𝐼𝐼𝑙𝑙′, go to step 2 
2.2.3.  construct a trajectory for CAV 𝑖𝑖 
2.2.4.  is 𝑥𝑥𝑖𝑖−1,𝑙𝑙

𝜏𝜏 −𝑥𝑥𝑖𝑖𝑖𝑖
τ

𝑣𝑣𝑖𝑖𝑖𝑖
τ ≤ 𝛿𝛿 and 𝑖𝑖 − 𝑗𝑗 + 1 ≤ 𝑃𝑃? 

2.2.4.1. Yes: set 𝐼𝐼𝑙𝑙′ = 𝐼𝐼𝑙𝑙′\{𝑖𝑖} and go to step 2.2.1 
2.2.4.2.  No: go to step 2 

End Loop 
Figure 2 – Prioritization and platooning algorithm 

 
3     Results 
 
We consider an isolated four-legged intersection with exclusive left turning lanes to test our 
proposed methodology. We assume that all vehicles are connected and automated, and their speed 
and location are acquirable in real-time. The acceleration rates of CAVs are assumed to take values 
between -4 𝑚𝑚/𝑠𝑠2 and 4 𝑚𝑚/𝑠𝑠2, and the speed limit is set to 12 𝑚𝑚/𝑠𝑠. Five demand levels with through 
demands ranging from 300 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 to 1500 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 at 300 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 increments are 
used to test the proposed methodology. Left-turning demand is assumed to be 8% of the through 
demand. The study period, planning time horizon, and trajectory updating time step length are 
assumed to be 900 𝑠𝑠, 20 𝑠𝑠, and 0.5 𝑠𝑠, respectively. 
Table 1 summarizes different mobility performance measures obtained from our proposed 
framework. Average delay increases as the demand level increases because a higher demand level 
increases the chance of the need for speed adjustments to prevent crossing conflicts. The proposed 
framework successfully operates demands as high as 1500 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 through the intersection 
while having an average delay as small as 2.04 𝑠𝑠. In addition, the average speed shows a reduction 
of only 0.68 𝑚𝑚/𝑠𝑠 compared to the free flow speed under the highest demand level.  
 

Table 1 –Mobility performance measures under different demand levels 
Demand level Average delay (𝑠𝑠) Average speed (𝑓𝑓𝑓𝑓/𝑠𝑠) 

1 0.71 11.76 
2 0.73 11.75 
3 0.86 11.71 
4 1.34 11.55 
5 2.04 11.32 

 
Distribution of the computation times throughout the study period under demand level 5 with 1500 
𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 shown in Figure 10 reveals that the framework spent less than 10 milliseconds to 
construct proper trajectories, and only occasionally took more than 10 milliseconds for it to compute 
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CAV trajectories. Moreover, the algorithm could find proper CAV trajectories in less than 35 
milliseconds for all the tested scenarios. 
 

 
Figure 3 – Computation times under demand level 5 

 
A centralized optimization-based benchmark is selected to test the quality of the results of our 
proposed framework. The centralized optimization problem introduced by Mirheli et al. (2018) is 
linearized and similar to our proposed methodology, incorporated into a receding horizon 
framework. The two methodologies are tested under demand level 3 with 900 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 through 
demand over a 300 𝑠𝑠-long study period since it is the highest demand that the central optimization-
based methodology can handle without crashing. Table 2 compares the two methodologies in terms 
of average delay, average speed, and average computation time. Our proposed heuristic calculates 
CAV trajectories more than 18600 times faster than the central optimization-based methodology 
while having 4.61% and 0.39% optimality gaps in terms of average delay and average speed, 
respectively. 
 

Table 2 –Mobility performance measures and computation time comparison between 
central optimization and greedy-based heuristic methodologies under demand level 3. 

 Average delay (𝑠𝑠) Average speed (𝑚𝑚/𝑠𝑠) Average run time (𝑚𝑚𝑚𝑚) 
Greedy heuristic 0.77 11.69 3.27 

Central optimization 0.74 11.74 60,930 
Difference 4.61% −0.39% −99.99% 

 
This paper introduced a real-time CAV trajectory optimization method for signal-free intersections. 
It utilizes a greedy heuristic approach, solving the optimization model in under 35 milliseconds 
under a demand level of 1500 𝑣𝑣𝑣𝑣ℎ/ℎ/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The proposed methodology achieves an optimality gap 
of 4.61% in average delay without relying on commercial solvers. 
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