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1 INTRODUCTION

The utilization of high-resolution satellite imagery is an increasingly prominent trend in trans-
portation science, offering the potential to enhance existing dynamic network models and address
the limitations of traditional data sources (Sakai et al., 2019, Reksten & Salberg, 2021, Ganji
et al., 2022). Satellite images provide comprehensive coverage and detailed insights into road net-
works, traffic patterns, and infrastructure at a scale previously that was previously unachievable
with data collected from local sensors. A primary challenge lies in developing a robust calibra-
tion framework (i.e., dynamic origin-destination demand estimation, DODE) for large networks
that effectively integrates traffic state information (i.e., traffic density) obtained from satellite
imagery with other data sources (Ma et al., 2020, Guarda et al., 2024). This study proposes a
computational-graph-based DODE framework leveraging multi-source data including traffic den-
sities derived from satellite images and explores the benefits of incorporating satellite imagery
into model calibration through numerical experiments using both synthetic and real-world data.

2 FORMULATION

2.1 Formulating multi-class link flow and link density

Following the work of Ma et al. (2020), the dynamic assignment ratio (DAR) matrix ρk,aarr,rs,m(t1, t2)
serves as the mapping from time-dependent path flow f rs

m,k,t1
to link arrival flow xt2arr,a,m. Hence

the arrival flow of link a at time t2 for class m can be modeled as

xt2arr,a,m =
∑

r,s∈R,S

∑
k∈Prs

m

∑
t1∈Td

ρk,aarr,rs,m(t1, t2) · frs
m,k,t1

(1)

f rs
m,k,t1

denotes the path flow departing at time t1 choosing path k between OD pair rs. Shown
in Figure 1a, the cumulative arrival flow of link a at timestamp t for vehicle class m, denoted by
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At
a,m, can be computed as the summation of all link flow before time t

At
a,m =

t∑
t2=1

xt2arr,a,m (2)

where xt2arr,a,m denotes the arrival flow of vehicle m on link a at time t2. The DAR matrix
ρk,aarr,rs,m(t1, t2) indicates the mapping from time-dependent path flow f rs

m,k,t1
to link arrival flow

xt2arr,a,m. Similarly, the cumulative departure flow link a at timestamp t for vehicle class m,
denoted by Dt

a,m, can be computed by

Dt
a,m =

t∑
t2=1

xt2
dep,a,m =

t∑
t2=1

∑
r,s∈R,S

∑
k∈Prs

m

∑
t1∈Td

ρk,adep,rs,m(t1, t2) · frs
m,k,t1 (3)

where xt2dep,a,m denotes the departure flow of vehicle m on link a at time t2. The DAR matrix
ρk,adep,rs,m(t1, t2) indicates the mapping from time-dependent path flow f rs

m,k,t1
to link departure

flow xt2dep,a,m. The difference between cumulative arrival flow and departure flow, divided by
segment length, is the density of class m at timestamp t, denoted by kta,m

kta,m · la = At
a,m −Dt

a,m (4)

To obtain more stable and smooth density estimation, we average the densities across several
neighboring time intervals around time t, denoted by [t − δ, t + δ], the average density can be
computed by

kta,m =
1

2δ + 1

t+δ∑
t′=t−δ

kt
′

a,m (5)

Since link lengths (la) depend only on link configurations, we use kta,m to represent the density
which is the vehicle number accumulated on the link at timestamp t. In vectorized form, we use
aggregation matrix Nm to perform the summation with respect to time before t.

k̂ =
∑
m∈C

(Am −Dm) =
∑
m∈C

(
Nmρmpmqm −Nmρ′

mpmqm
)

(6)

2.2 DODE formulation

The DODE problem can be formulated as a mathematical programming with travel behavior
and network flow dynamic constraints, shown as Equation 7.

min
{qm}m

L = w1

∥∥∥∥∥∥y −
∑
m∈C

Lmρmpmqm

∥∥∥∥∥∥
2

2


︸ ︷︷ ︸

L1

+w2

∥∥∥∥∥∥z −
∑
m∈C

MmΛ̄ (ρmpmqm)

∥∥∥∥∥∥
2

2


︸ ︷︷ ︸

L2

+

w3

∥∥∥∥∥∥k −
∑
m∈C

(
Nmρmpmqm −Nmρ′

mpmqm
)∥∥∥∥∥∥

2

2


︸ ︷︷ ︸

L3

s.t. {hm,ρm,ρ′
m}m = Λ({fm}m)

fm = pmqm

pm = Ψm({cm}m, {hm}m)

qm ≥ 0, ∀m ∈ C

(7)

where y, z and k are observed count, travel time and density. Lm, Mm and Nm are aggregation
matrices used to map simulated conditions to observed conditions. The objective function is
minimizing the differences between modeled and observed traffic conditions including link traffic
count, link travel time and link density. The constraints are behavior model such as route choice
function Ψ, and dynamic network loading (DNL) function Λ. The route choice function use path
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and link travel cost (cm and hm) as inputs and outputs route choice proportion pm. The Λ
function loads path flow fm in the network and outputs link travel time hm and DAR matrices
ρm and ρ

′
m. We use the Λ̄ to indicate the relationship between link arrival flow xm = ρmpmqm

and link travel time hm, denoted by hm = Λ̄(xm).
The formulation can be presented on a computational graph (Figure 1b) and solved by

forward-backward algorithms efficiently. In the forward pass, a dynamic traffic assignment (DTA)
problem is solved using behavior function Ψ and DNL model Λ given fixed demand qm. Route
choices and link-level traffic states are obtained. During the DNL, dynamic assignment ratios
(DAR) are recorded and the DNL process can be approximated in a linear manner using route
choice proportion and DARs. In the backward process, the gradient of loss function with respect
to demand is computed, following Equation 8. Any gradient based solution algorithm can be
used to solve the DODE on the computational graph.

∂L

∂qm
=− 2w1p

T
mρT

mLT
m

y −
∑
m∈C

Lmρmpmqm

− 2w2p
T
m

∂Λ̄m({fm}m)

∂fm
MT

m

z −
∑
m∈C

Mmhm


− 2w3p

T
m ·

(
ρT
mNT

m − ρ
′T
m NT

m

)
·

k −
∑
m∈C

(
Nmρmpmqm −Nmρ′

mpmqm
) (8)

3 EXPERIMENTS

The first numerical experiment is conducted on a small network (18 links) with synthetic data.
Figures 2 show the comparison of traffic state estimation of Out-of-sample (OOS) links on toy
network. As can be seen, the R-squares are all higher in the scenario with density observations,
indicating that incorporating density into the calibration can help improve the estimation of
unobserved OOS links in terms of all traffic conditions (i.e., link count, travel time and density).
We also test our framework on a real-world network around Pittsburgh City, consisting of 16144
links. The densities are captured from a satellite image of Pittsburgh Downtown area. The
R-squares for traffic counts travel times of observed links are shown in the Figure 3. It can
be seen that adding density observation for large-scale network calibration may decrease the
estimation accuracy of observed links. This can be explained by the incompatibility for different
data sources. However, examining the estimation results for unobserved OOS links reveals that
integrating density with other data can enhance accuracy during some certain periods. For
example, the OOS link (ID 2656) is a critical part of the I-376 in Pittsburgh Downtown area.
The traffic count of cars for the interval from 12:15 to 12:30 (time period covering the timestamp
of the satellite image used) is estimated to be 228 using observed count and travel time. With
density data included, the estimation rises to 626, aligning more closely with the actual observed
count of 609.
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(a) density estimation
(b) computational graph

Figure 1 – Figures for modeling approach

(a) car count (b) truck count

(c) car travel time (d) truck travel time

(e) car density (f) truck density

Figure 2 – Comparison of traffic state estimation for out-of-samples

(a) scenario 1 without density (b) scenario 2 with density

Figure 3 – Estimation of observed links in two scenarios

TRC-30 Original abstract submittal


	INTRODUCTION
	FORMULATION
	Formulating multi-class link flow and link density
	DODE formulation

	EXPERIMENTS

