
Online operation strategies for crowdsourced mobile charging
service

A. Yiming Yana, B. Xi Linb, C. Yitong Yua and David Z.W. Wang a,∗

a <School of Civil and Environmental Engineering>, <Nanyang Technological University>,
<Singapore>

a.yiming007@e.ntu.edu.sg, b.x-lin@mail.tsinghua.edu.cn
b <Department of Civil and Environmental Engineering>, <University of Michigan>, <Ann

Arbor>, <United States>
c.yitong001@e.ntu.edu.sg
d.wangzhiwei@ntu.edu.sg
∗ Corresponding author

Extended abstract submitted for presentation at the Conference in Emerging Technologies in
Transportation Systems (TRC-30)

September 02-03, 2024, Crete, Greece

April 28, 2024

Keywords: (Crowdsourced mobile charging; Charging service for Electric vehicles; Reinforce-
ment learning; Online operation)

1 Introduction

Electric Vehicles (EVs) are widely recognized as a promising solution for reducing emissions
and saving energy. There has been a fast-growing adoption of EVs in recent years, mobi-
lizing the transportation landscape towards a more environmentally friendly future (Ferrero
et al., 2016). However, despite considerable technological and market progress, charging EVs
is still less convenient than conventional refueling vehicles. The abovementioned issue calls
for an integrated and efficient EV charging system to cater to massive and diverse charging
demands in the future electric mobility system. Based on charging location flexibility, ex-
isting recharging modes for EVs can generally be classified into fixed charging and mobile
charging. This study considers a mobile charging crowdsourcing online platform that utitl-
izes crowdsourced vehicles to provide mobile charging services for EV users. The primary
objective of this study is to determine the optimal operation strategies, such as the matching
between mobile charging demand and supply, repositioning of the mobile chargers, so as to
maximize the profit gained by the operation of crowdsourced mobile charging service.

Let us consider a multi-zone service area. The area contains a set of pre-determined
zones, denoted by Z . Each zone contains some potential customer locations (e.g., parking
lots), where EVs could be parked for mobile charging services. In zone z ∈ Z , the set of
potential customer locations is denoted by Pz, and P ≜

⋃
z∈Z Pz. There are some recharg-

ing facilities for the mobile chargers to get recharged (or get their batteries swapped), and
the set of all recharging facilities is denoted by R. There could exist some zones without
any recharging facility. The travel time between two locations i, j ∈ P ⋃R is a unchanged
magnitude, denoted as t̄ij; t̄ii = 0 for any i ∈ P ⋃R.

A platform is operating the mobile charging service in this area, and the operation is
a dynamic process with certain level of stochasticity. At any time, there could be a newly
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generated recharging order at certain potential customer location, with an associated latest
allowable service completing time (indicating the expected time that the vehicle leave the
parking spot) and the associated charging amount. Each order is with a recharging earning
for the platform that is directly related to the charging amount. If a vehicle does not get
a complete recharge before its latest allowable time, the order is canceled, and there will
be a penalty associated with the platform operation. On the other hand, the platform is
operating a flexible fleet of crowdsourced mobile chargers, such that there could be mobile
chargers joining or leaving the fleet at any time. Each mobile charger is with a maximum
battery level and a safety battery level; if the battery level is below the safety threshold
after serving one order, the charger needs to go to one recharging facility. We ignore the
energy consumption associated with traveling of mobile chargers. The goal of this study is to
design a methodological framework for operating the mobile charger fleet, including routing,
recharging, and repositioning among zones.

2 Methodology

The methodological framework for the online operation of the crowdsourced mobile charging
services is designed as a two-layer structure, as shown in Figure 1. The lower layer concerns
the routing (or equivalently, order assignment) of mobile chargers within each zone, and the
decision-making frequency is relatively high (e.g., every 15 minutes); and the upper layer
decides the inter-zone charger repositioning, with a relatively larger decision-making interval
(e.g., every 45 minutes). The motivation for this two-layer framework is to balance the solution
quality and computational loads. On one hand, by restricting the routing problem to each
zone, the lower-layer problem can greatly alleviate the real-time computational burden; on
the other hand, the upper-level repositioning decision can coordinate the routing of each
zone in order for handling the spatio-temporal heterogeneity between supplies and demands,
therefore achieving area-wise operating efficiency.

Figure 1 – Illustration of the two-layer modeling framework.

2.1 The lower-layer problem

The lower layer problem determines the routing (i.e., order assignment) of each mobile
charger for each zone. Consider a specific zone at certain lower-layer decision time td, and
for notational brevity we ignore the subscript of the zone and the time. The set of all mobile
chargers in this zone at time td is denoted as M. For a charger k ∈ M, its earliest available
time is te,k ≥ td, suggesting the time that it completes the current order service or completes
recharging; at te,k, its location is Le,k ∈ P ⋃R, the remaining battery level is denoted as Be,k.
The safety battery level of charger k is Bk. On the demand side, the set of all unserved orders
is denoted as O. For an order l ∈ O, its location is L̂l ∈ P , the amount of charge required
is Êl , the charging time required is Ĝl , the charging revenue is Ŷl , and the associated latest
allowable service completing time is T̂l . Besides, if a vehicle does not get a complete recharge
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before its latest allowable time, the order is canceled, and there will be a penalty P̂l which is
same for all orders no matter what the amount of charge required.

In real-world operation, the size of unserved orders could be very large. Also, as the
operation is inevitably associated with certain level of stochasticity, it is of limited value to
determine the routing of all mobile chargers throughout the whole day in one decision time.
Thus, for the lower layer decision problem, we set the decision horizon to be [td, td + Hd],
where Hd is the length of the decision horizon, and Hd should be larger than the lower-
layer decision-making interval. We define a restricted order set Ô as a subset of O that
contains all orders with the latest allowable service completing time earlier than td + Hd; if∣∣∣Ô∣∣∣ < |M|, then we define Ô as the set containing |M| orders with the earliest allowable
service completing times, and in this case the penalty does not exist. The goal of the decision
problem at the current time is to assign the orders in Ô to the mobile chargers for maximizing
the total payment to the platform.

With the above preparation, the lower-layer decision model in each zone is then formu-
lated as follows.

max
x,u,t̂,ê

∑
n∈{1,2,...,N}

∑
k∈M

∑
l∈Ô

Ŷlxn
kl − ∑

l∈Ô
P̂l(1 − ∑

n∈{1,2,...,N}
∑

k∈M
xn

kl) (1)

s.t. ∑
n∈{1,2,...,N}

∑
k∈M

xn
kl ≤ 1 ∀l ∈ Ô (2)

1 ≥ ∑
l∈Ô

xn
kl ≥ ∑

l∈Ô
xn+1

kl ∀k ∈ M, n ∈ {1, 2, . . . , N − 1} (3)

uk,n
l,l′ ≥ xn

kl + xn+1
kl′ − 1 ∀k ∈ M; l, l′ ∈ Ô, n ∈ {1, 2, . . . , N − 1} (4)

uk,n
l,l′ ≤

1
2

(
xn

kl + xn+1
kl′

)
∀k ∈ M; l, l′ ∈ Ô, n ∈ {1, 2, . . . , N − 1} (5)

t̂1
k = te,k + ∑

l∈Ô
x1

kl

(
t̄kl + Ĝl

)
∀k ∈ M (6)

t̂n
k = t̂n−1

k + ∑
l,l′∈Ô

uk,n−1
l,l′

(
t̄l,l′ + Ĝl′

)
∀k ∈ M, n ∈ {2, . . . , N} (7)

t̂n
k ≤ T̂l + M(1 − xn

kl) ∀k ∈ M, l ∈ Ô, n ∈ {1, . . . , N} (8)

ê1
k = Be,k ∀k ∈ M (9)

ên
k = ên−1

k − ∑
l∈Ô

xn−1
kl Êl ∀k ∈ M, n ∈ {2, . . . , N} (10)

∑
l∈Ô

xn
kl ≤

ên
k

Bk
∀k ∈ M, n ∈ {2, . . . , N} (11)

xn
kl , uk,n

l,l′ ∈ {0, 1} ∀k, l, l′, n (12)

The above problem contains four types of decision variables: xn
kl is a 0-1 variable indicat-

ing whether charger k serves order l on its nth place in the sequence; uk,n
l,l′ is a 0-1 variable

indicating whether charger k serves order l on its nth place and then serves order l′ on its
(n + 1)th place in the sequence; t̂n

k represents the service completing time for charger k on its
nth place in the sequence; and ên

k represents the remaining battery level for charger k before
serving its nth order in the sequence. The objective function Eq.(1) aims at maximizing the
total profit minus the penalty of unserved demand in the decision horizon, where N is the
preset maximum number of orders assigned to each mobile charger. Eq.(2) states that each
order is served by at most one mobile charger once. Eq.(3) states that a mobile charger serves
at most one order in one place in the sequence, and meanwhile suggests the sequence feasi-
bility. Eqs.(4)-(5) demand that: uk,n

l,l′ = 1 if and only if xn
kl = xn+1

kl = 1. Eqs.(6)-(7) state the
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updating rules for variable t̂n
k , and Eq.(8) requires that: if charger k serves order l on its nth

place in the sequence, the service completing time must be no later than the associated latest
allowable time T̂l . Similarly, Eqs.(9)-(10) state the updating rules for variable ên

k , and Eq.(11)
requires that a charger k can serve some order only if the remaining battery level is no less
than the safety threshold Bk. Finally, Eq.(12) states the binary nature of variables xn

kl , uk,n
l,l′ .

2.2 The upper-layer problem

Now suppose we are at an upper-layer decision time τ. Our goal in the upper-layer problem is
to determine the repositioning of mobile chargers among zones to achieve the maximum ex-
pected reward in the remaining operational horizon in the day. For this purpose, we propose
a stochastic dynamic decision-making formulation for tackle the problem; this formulation
contains the following components:

• States: At the decision time τ, the current system states include: the number of mobile
chargers in each zone z ∈ Z , denoted by Vτ

z ; the number of unserved orders in each
zone z ∈ Z , denoted by Uτ

z . The state variable is aggregated as Sτ ≜ (Vτ, Uτ).

• Actions: At the decision time τ, the action is denoted by Aτ
z,z′ , indicating the number of

mobile chargers repositioned from zone z ∈ Z to zone z′ ∈ Z . The aggregated form is
denoted by Aτ.

When the state-action pair (Sτ, Aτ) is given, the state of the next stage, i.e., Sτ+1, can be
inferred accordingly. However, due to the intrinsic stochasticity of the operation process, Sτ+1

cannot be determined uniquely, so it is essentially a random variable. Compactly, we use ζτ

to denote the random seed, and the combination (Sτ, Aτ, ζτ) could uniquely identify the state
of the next stage.

Let us denote the optimal expected reward associated with state Sτ as Rτ,∗(Sτ), and the
current-stage reward under (Sτ, Aτ, ζτ) is denoted by Qτ (Sτ, Aτ, ζτ). Then, we can write
down the optimality condition of the stochastic dynamic decision-making problem as:

Rτ,∗(Sτ) = max
Aτ

Eζτ

[
Qτ (Sτ, Aτ, ζτ) + Rτ+1,∗ (Sτ, Aτ, ζτ)

]
∀τ ∈ T (13)

where T is the set of all upper-layer decision-making stages. Meanwhile, if we denote the
optimal action given the state information at stage τ as Aτ,∗(Sτ), then we can write down the
decision-making problem as below:

Aτ,∗(Sτ) ∈ arg max
Aτ

Eζτ

[
Qτ (Sτ, Aτ, ζτ) + Rτ+1,∗ (Sτ, Aτ, ζτ)

]
∀τ ∈ T (14)

When the relocation decision is made, the execution of the actions can be with a simple
manner. For instance, if the decision requires a zone to relocate 4 mobile chargers to other
zones, then we can choose four chargers with the earliest available times to leave the zone
immediately after they finish their current services. The destination nodes of these vehicles
can be set as the ones with the smallest travel times in the trageted zones.

3 Results

To verify the effectiveness of our proposed framework, we conduct numerical experiments
based on two networks, a two-zone toy network and a realistic network in Chongqing.
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