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1 INTRODUCTION

The advancement in traffic data collection technologies, including loop detectors and GPS de-
vices, has significantly transformed traffic management systems. These technologies enable the
generation of vast data volumes, catalyzing the development of sophisticated machine learning
(ML) models tailored for real-time Traffic Incident Prediction (TIP). Traditionally, these models
have focused on ’link-level’ incident prediction, assessing the risk on specific road segments by
analyzing data from upstream and downstream links. Although valuable, such models often over-
look broader traffic dynamics that influence incident probabilities on a larger scale. In contrast,
’network-wide’ incident prediction models provide a holistic view of risks across a city’s traffic
network, supporting effective incident management and resource allocation for sub-areas (Tran
et al., 2023). However, these models face challenges in handling large data volumes and compu-
tational demands, which may limit their predictive accuracy and detail in managing incidents
on specific road segments or smaller regions. Recent research has increasingly leveraged ML,
especially deep learning and Graph Neural Networks (GNNs), to handle the complex patterns in
traffic data effectively. GNNs align with the graph structures of road networks, as demonstrated
by Deep Spatio-Temporal Graph Convolutional Network for Traffic Accident Prediction (DST-
GCN) for links (Yu et al., 2021). Further, ML researchers (Wang et al., 2021a,b) have employed
a grid-based approach to segment traffic networks into ’cells’, each representing a specific area,
attempting to predict regional risk for these cells. However, these models adopt a grid or image
representation of the city network, which does not accurately reflect the real-world interconnected
road structures, thereby limiting their practical applicability. Moreover, while the integration
of imagery and numeric data has been demonstrated in traffic demand prediction (Wang et al.,
2024), it remains largely unexplored for incident prediction. This integration could leverage
diverse data sources, such as HERE or Google Congestion Maps, providing broader views on
traffic network structures and conditions. Therefore, there is a critical need for models that
not only utilize the complementary aspects of imagery (e.g., link congestion heatmap images)
and numeric data (e.g., loop detector data) but also predict at a more granular level, such as
individual links or sub-areas, rather than abstract grid cells. Such models would provide clearer,
more precise predictions for traffic operators, closely aligning with the actual configuration of
transportation networks. In response to existing limitations, our research introduces Multi-task
Multi-view Neural Networks (M2NN), a novel approach that diverges from grid-based predic-
tions and traditional models reliant solely on numeric data to enhance model applicability across
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real-world networks. M2NN achieves fine-grained predictions for links and allows for flexible
application across diverse sub-areas in the large network. We innovatively integrate sub-area
incident prediction as a sub-task within our multi-task learning framework. This design enables
M2NN to simultaneously learn and predict incident risks at both the link and sub-area levels, ef-
fectively capturing localized patterns and providing a comprehensive risk overview by leveraging
complementary link-level and sub-area-level data. Also, M2NN incorporates congestion heatmap
imagery of links alongside numeric data, such as loop detector data and information vectors—a
synergy not extensively explored in current research. This multi-view approach enriches the en-
coding process, enhancing our model’s predictive performance. Preliminary results with diverse
real-world data sets demonstrate M2NN’s enhanced fine-grained predictive capability, aligning
the complementary use of imagery and numeric data in improving traffic demand analysis (Wang
et al., 2024) and expanding the use of map images (e.g., satellite images) for TIP models.

2 METHODOLOGY

Figure 1 – Multi-task Multi-view Neural Networks

Link-level Incident Prediction Definition: Consider a set Sc encompassing all sub-areas
within a radius c of a given study network. We have m distinct link-level data sources, each
representing unique subgraphs for every sub-area. Our multi-view multi-task traffic incident
prediction model uses a set of subgraphs Gsj
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marks the start of the prediction window, and Td is the window’s duration. The input subgraph
set Gsj

t , created using time-varying traffic features from the interval [t− Tb, t], and the sequence
of congestion heatmap images of links Msj

t , also derived within the same interval, provide spatial
and temporal data. This data is enriched by contextual features like calendar data (e.g., day of the
week, public holiday) included in the feature vector X

sj
t . Figure 1 illustrates our M2NN model,

which comprises three modules: Multi-view Feature Construction (MFC), Multi-view Repre-
sentation Learning(MRL), and Multi-task Prediction (MP), respectively. In our experiments,
MFC module assembles cross-level input data from any given sub-area s into structured and
unstructured representations: traffic graphs G for links’ loop detector data, congestion heatmap
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images Ms
t from the HERE platform, each image M s

t reflecting typical traffic conditions at
time t, augmented with vectors for temporal context Xs

t . These multi-aspect representations
are then processed by MRL module using specialized extractors: Image Extractor employs a
pre-trained Convolutional Neural Network, i.e., ResNet-18, for capturing spatial embeddings of
the sequence of input images M s

t , and Gated Recurrent Units (GRUs) for sequential encoding of
these spatial embeddings; Traffic Graph Extractor obtains graph and node (’sub-area-wide’ and
link) embeddings, via Graph Neural Networks; and External Information Extractor encodes Xs

t

into embeddings using a Multi-layer Perceptron. Next, MP module leverages these multi-aspect
embeddings to predict incident risks (probabilities) at both link and sub-area levels, optimizing
prediction accuracy via a multi-task strategy that minimizes a joint or overall objective function
L. L incorporates the consistency loss, Lconsistency, crucial in ensuring alignment between link-
level and sub-area-level incident predictions. Lconsistency is formulated as the mean squared error
between the aggregated probabilities of link-level incidents within a specific sub-area and the

corresponding sub-area-level incident probability: Lconsistency =
∥∥∥∑i∈s ŷ

ti
n+1,link − ŷtin+1,area

∥∥∥2.
The overall objective is defined as L = 1

B

∑B
b=1(θ1L

b
link + θ2L

b
area + θ3L

b
consistency). Here, θ1, θ2,

and θ3 are hyperparameters that balance the contributions of link-level, area-level, and consis-
tency losses within the overall objective function, denoted by L. B indicates the total number
of training batches. This L within MP module allows M2NN to train end-to-end, optimizing
the accuracy of link-level predictions. It achieves this by effectively leveraging the complemen-
tarity between macroscopic (sub-area-wide) and microscopic (link-specific) perspectives, which
enhances incident prediction across a large network.

3 RESULTS
Table 1 – Performance showing the impact of congestion heatmap imagery & multi-task learning.

Model Acc@5% Acc@10% MRR NDCG@10%
M2NN w/o image data 0.4583 0.6406 0.4466 0.5416

M2NN w/ road map image (B/W) 0.4648 0.6476 0.4377 0.5576
DSTGCN 0.4723 0.6433 0.4443 0.5538

M2NN w/ congestion heatmap images 0.4948 0.6880 0.4776 0.5776
M2NN 0.5313 0.7031 0.4687 0.5888

Effectiveness of M2NN architecture: We employed the MSGNN incident predictor on
traffic data from loop detectors in Brisbane and Gold Coast, Australia, supplemented by Traf-
fic Pattern Map images (representing the typical congestion heatmap given a specific time of
day and day of week) from the HERE platform. Following the undersampling guidelines from
Yu et al. (2021), we constructed 1600 cases with half incident and half non-incident cases and
a 15-minute prediction horizon (Tp), 5-minute prediction window (Td) and Tb = 30 minutes,
distributed in a 7:1:2 train-validation-test split. To assess the model’s precision in identifying
specific incident links from multiple possibilities in any given sub-areas, we adopted evaluation
metrics from Hong et al. (2023), each scaled between 0 (poorest performance) and 1 (optimal
performance): Top-k Accuracy (Acc@K%) evaluates whether true incidents rank within the top
k-percentile of predicted risks, accommodating varying link counts across sub-areas. Mean Re-
ciprocal Rank (MRR) measures the average inverse rank at which actual incidents are predicted,
emphasizing the model’s ability to prioritize incident links effectively. Normalized Discounted
Cumulative Gain (NDCG@K%) quantifies the model’s ranking quality, comparing the predic-
tions to an ideal ranking, with an emphasis on the most relevant K-percentile of links, providing
an intricate assessment of prediction accuracy in diverse road networks. An ablation study,
summarized in Table 1, highlights the M2NN model’s dependency on visual data for improved
performance. Models without imagery underperformed, validating the hypothesis that visual
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context significantly enhances prediction accuracy. Incremental improvements were observed
with black and white imagery, but the integration of congestion heatmap imagery showed a sub-
stantial increase in performance metrics since it provides network-wide traffic conditions along
with network structures, which are further complemented by numeric data such as loop detector
data. Full M2NN configuration, which integrates congestion heatmap images with multi-task
learning, outperformed all while DSTGCN, although moderately better than the M2NN with-
out image data, still fell short, indicating its limited ability to utilize complex contextual data
effectively. How M2NN compares with existing model? We applied M2NN and DSTGCN
to different sub-areas to obtain risk predictions at the time of two actual incidents. In Figure
2, the first scenario (left) demonstrates the M2NN model’s nuanced spatial accuracy by aligning
its risk prediction with the actual incident location at a complex intersection. In contrast, the
DSTGCN model’s prediction deviates slightly, highlighting the enhanced spatial discernment of
M2NN. The right scenario shows M2NN accurately identifying high risk on a link that is directly
connected to the actual incident location, while DSTGCN’s prediction is displaced further from
the location where the road splits. This suggests a potential underestimation of environmental
and contextual risk factors, such as road structures, by DSTGCN, which M2NN effectively con-
siders via its multi-view and multi-task learning modules. These scenarios demonstrate M2NN’s
superior spatial accuracy, attributable to its integrated multi-view and multi-task learning mod-
ules, which effectively synthesize link-specific and broader area-wide data, significantly improving
upon DSTGCN’s approach that lacks such integration.

Figure 2 – Link-level risk predictions comparison regardless of sub-area networks.

4 DISCUSSION & FUTURE RESEARCH

Our results demonstrate that M2NN surpasses existing approaches in predicting traffic incidents
on network links through a multi-task learning approach that integrates multi-level data sources.
This method enhances prediction accuracy by enabling coordinated predictions across link and
sub-area levels. It opens avenues for further research into synergistic prediction tasks, such as
incident duration and severity, highlighting the benefits of combining numeric and imagery data.
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