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1 INTRODUCTION

The study of causality on traffic networks has gained increasing attention in intelligent trans-
portation systems, particularly in the context of prediction and structural issues. The causal
graph plays a powerful role in congestion (Luan et al., 2022) and accidents (Deng et al., 2023)
investigation, as it provides visual and mathematical representations of causal relations in traffic
networks and reveals the propagation process of causal impacts.

Given the complexity of actual traffic network structures, previous studies have generated
the causal graph solely based on information theory such as Lasso Granger Causality regression
model (Li et al., 2015) and transfer entropy (Chen et al., 2021), resulting in limitations including
imprecise mappings and unverifiable effects. To improve the precision of causal correlations,
model-based approaches have been used to achieve trainable causal graph with continuity func-
tions. However, these approaches primarily focus on detecting pair-wise mutual information,
which may not adequately capture the complex relationships in real traffic networks. Further-
more, all previous methods discard the structural characteristics of the network topology graph,
focusing only on the temporal correlations. Thus, architectural information on traffic topology
is lost, hindering a more comprehensive understanding of the causal relations.

To address the limitations, we provide a new perspective to achieve the region-wise causal
inference of complex traffic network with enhanced verifiability and interpretability. Specifically,
the initial causal matrix constructed by trainable transfer entropy captures the region-wise causal
effect by information aggregation within the designed causal-integrated Graph Convolutional
Network (GCN). The improvement of traffic flow forecasting accuracy evaluated on real-world
dataset using causal graph indicate the effectiveness of the proposed method in capturing causal
relations. Furthermore, we perform comparisons between topology and causal graph, where the
visualization of the asymmetric causal graph provides the understanding of traffic dynamics and
underlying causal impacts.

2 METHODOLOGY

In the proposed model as shown in Figure 1, trainable transfer entropy is applied to build the ini-
tial causal matrix. Subsequently, this matrix is iteratively refined through a GCN-integrated ap-
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Figure 1 – The overall framework of the proposed model

proach, employing end-to-end training to enhance the precision of traffic flow forecasting thereby
optimizing the matrix representation. To capture the region-wise causal impacts in traffic net-
works, the refined causal matrix is constructed through spatial convolution layers that aggregate
spatiotemporal information from neighbors of each node as defined by the adjacency matrix.

2.1 Trainable Transfer Entropy Algorithm

Transfer Entropy is an extension of information entropy to quantify the transfer of information
and reveal the impacts between nodes in the traffic topology. Combining the discrete information
entropy h(X) = −

∑
x p(x) log p(x) and conditional probabilities, transfer entropy (Schreiber,

2000) at time step t is defined as:
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where Yt∼(t−l+1) and Xt∼(t−k+1) stand for the past l and k time steps’ traffic flow of node Y and
node X in the topology graph, respectively. Ty→x measures the impact of Yt∼(t−l+1) to xt+1 in
the presence of Xt∼(t−k+1). As joint probability provides a more comprehensive representation
of the probability distribution, the conditional probability is transformed into its corresponding
joint form, where Eq. (1) can be formulated as:
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To address the discrete nature of the node’s value and inconsistent dimensions between two
nodes, a novel way to estimate the joint probability density of xt and Ym∼(m−l+1)is proposed as:

p̂
(
xt, Yt∼(t−l+1)

)
=

1

N

N∑
m ̸=t

Sigmoid
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√
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(3)

where m refers to all evaluative time steps.
√
(xm − xt)2 and

√∑
l(Ym∼(m−l+1) − Yt∼(t−l+1))2

represent L2 distance between all pairs across N time steps and λ is the threshold judging
the possibility. Sigmoid is an activation function that enables the update ability of λ via
back-propagation and adds non-linear characteristics. If the L2 distance between the target
(xt, Yt∼(t−l+1)) and the current evaluative sample (xm, Ym∼(m−l+1)) is less than the threshold λ,
the target is potentially related to the evaluative sample. The final joint probability density is
obtained by the sum of all evaluative pairs.

Thus, the transfer entropy Ty→x and Tx→y between any two nodes on the overall timeline are
calculated to characterize the strength of directed causal impact based on the joint probability
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Table 1 – PeMSD4 Comparison Result

Graph Structure Type MAE RMSE MAPE
Original Road Network 24.54 38.02 17.97%
causal Graph Three-Hop 24.38 37.81 17.87%
causal Graph Two-Hop 21.01 33.03 14.44%
causal Graph One-Hop 22.02 34.83 14.94%

density, where the nodes in the causal graph are defined as Cxy = Sigmoid(Ty→x − Tx→y).
According to the properties of the sigmoid function, Cxy > 0 when Ty→x > Tx→y, which indicates
the causal impact from y to x. To preserve the information on topology to a maximum extent
and make comparisons between distinct causal graphs, we establish an initial causal graph among
one-hop neighbors, two-hop neighbors and three-hop neighbors of nodes in the topology graph.

2.2 Causal-Integrated Graph Convolutional Network

Causal-Integrated Graph Convolutional Network (CIGCN) is proposed to analyze spatiotemporal
correlations of traffic networks. CIGCN applies convolutional operations in spatial and temporal
dimensions simultaneously, with emphasis on the attention mechanism. As shown in Figure 1,
the spatial convolution is conducted on the causal graph derived from Subsection 2.1 instead of
the original graph obtained from transportation topology. By integrating the threshold param-
eters of transfer entropy into overall parameters of GCN, the whole model can be end-to-end
differentiable, allowing for continuous updates to the causal graph during training.

Following the principle of light graph convolution (He et al., 2020), we transform the acquired
causal matrix C ∈ RN×N into normalized form and define ETr ∈ RN×Tr as the historical flow
of N nodes at time steps Tr. Then, the spatial convolution is defined as:

HTr = ReLU
(
D− 1

2CD− 1
2

)
ETr (4)

where D ∈ RN×N is the diagonal matrix and HTr represents the updated underlying features
corresponding to the flow of N nodes over time steps Tr. ReLU is adopted as the activation
function for negative outputs which is beneficial for noise removal. Based on the form of spatial
convolution, temporal convolution can be formulated as:

ÊTr+1 = ReLU
(
Φ ∗

(
ReLU

(
D− 1

2CD− 1
2

)
ETr

))
(5)

where ÊTr+1 ∈ RN×1 indicates the predicted result of next time step over historical time steps
Tr, and Φ is the convolution kernel used to capture information over Tr time steps.

3 RESULTS

Dataset and experimental setting. The proposed model is evaluated on the real-world traffic
dataset PeMSD4, which comprises real-time traffic flow data collected every 30 seconds from
highways containing 307 sensors on 29 roads in the San Francisco Bay Area, California. The
original dataset is aggregated into five-minute points, and missing values are filled by linear
interpolation. The historical time steps of (x(k)t , y

(l)
t ) is defined as 10. Additionally, the causality

computation is conducted on one, two, and three-hop neighbors.
Experimental results and analysis. To validate the efficiency of the proposed causal graph,
a comparative analysis is conducted between the causal graph and topology structure graph in
the spatial convolution process defined as Eq. (4). The traffic forecasting results presented in
Table 1 underscore the traffic forecasting improvement by the causal graph, which highlights the
efficacy of incorporating the causal graph in enhancing the performance of CIGCN. Besides, the
two-hop causal matrix achieves the best prediction performance. From a structural perspective,
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it aggregates two-hop neighbors with strong causality in the subsequent convolution process,
making it less susceptible to the influence of noise. The three-hop causal matrix shows less
satisfactory performance due to the excessive information from distant neighbors, which implies
including too many neighbors in the analysis can have negative effects. Additionally, Figure 2
visualizes the topology graph and two-hop causal graph. In contrast to the symmetric topology
matrix representing bidirectional relationships, the asymmetry of the derived causal matrix in-
dicates the distinct and unidirectional correlations between each pair of nodes, which provides
the foundation for understanding of traffic dynamics and analysis of underlying causal relations.

(a) Topology matrix (b) Two-hop causal matrix

Figure 2 – Visualization of traffic topology graph and causal graph

4 DISCUSSION

This study examines the potential of GCN-integrated end-to-end training methods based on
trainable transfer entropy to derive region-wise causal graphs with strong interpretability of
causal impacts. The superior traffic flow forecasting performance with the obtained causal graph
illustrates that graph-structured learning is more controllable and interpretable to achieve causal-
ity detection, which can be wildly used for bottleneck identification as well as accidents and
congestion prediction. Our future work will focus on further enhancing practical application
capabilities of causal graph models from two aspects: 1) Complexity Optimization - fastening
training speed and reducing time consumption caused by causal graph reconstruction. 2) Struc-
ture Analysis - Conducting structure mining through causal graphs in fields including bottleneck
identification or excavation of vital network architecture, which further verifies the correctness
of the causal graph.
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