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1 INTRODUCTION

The advent of advanced traffic data collection technologies, such as loop detectors and GPS
devices, has revolutionized traffic management by enabling the generation of vast data amounts.
This has facilitated the development of sophisticated machine learning (ML) models for real-time
traffic incident prediction. These models, which are trained on historical traffic data, play a piv-
otal role in forecasting traffic incidents. However, the inherent variability and unpredictability
of traffic dynamics and incident patterns necessitate that these models not only predict inci-
dents with high accuracy but also gauge the certainty of their predictions. In critical safety
applications, uncertainty estimation is vital, enabling traffic management authorities to measure
the confidence levels of predictions and make informed decisions. This capability is essential for
effective decision-making in road safety and for implementing these models in production envi-
ronments. A particularly relevant use case for uncertainty estimation arises during adverse and
rare event conditions, such as severe weather, which significantly alters road conditions and driver
behavior. For example, if a model predicts a high risk of accidents on a specific road link during
a storm but with notable uncertainty, traffic managers might choose to issue a general caution
instead of a full closure. This informed strategy optimizes safety without unnecessary traffic
disruption by considering both the predicted risks and the confidence levels of those predictions.

Research in traffic incident prediction increasingly utilizes Machine Learning (ML), especially
Deep Learning techniques such as Graph Neural Networks (GNNs), due to their efficacy in
handling complex traffic data patterns. GNNs are well-suited for modeling the graph structures
of road networks, a strength demonstrated by Wang et al. (2021a)’s GSNet for regional risk
assessment and further applied in city-wide risk evaluations (Wang et al., 2021b). Our previous
work advances these models through the Multi-structured Graph Neural Network (MSGNN)
(Tran et al., 2023), which integrates diverse data sources for ’network-wide’ predictions. However,
the dynamic nature of traffic conditions and behaviors poses a challenge to the reliability of ML
models trained on static datasets, potentially leading to obsolete or overly confident predictions
in real-world critical applications. Thus, ensuring the reliability and timely applicability of these
models is critical, mirroring trends in safety-critical fields like healthcare (Dolezal, 2022) and
autonomous driving (Dong et al., 2023), where uncertainty quantification and explainable AI are
key. Motivated by the necessity for reliable Traffic Incident Prediction (TIP), we diverge from
existing works that emphasize model capability, focusing instead on reliability through our novel
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Uncertainty Aware Traffic Incident Prediction (UATIP) framework. This enriches predictive
models with an Uncertainty Estimation (UE) ability, enhancing real-time interpretability and
reliability—a facet not thoroughly addressed in current research. UE aids in discerning highly
confident predictions from those warranting caution, thus bolstering the practical utility of traffic
prediction models. Our experiments on MSGNN with varied real-world data highlight the UE’s
role in augmenting prediction reliability. This advancement portends significant contributions to
Explainable AI (Dong et al., 2023) in TIP and supports the application of Trustworthy Transfer
Learning (TTL) (Shen et al., 2023), promising enhanced accuracy and robustness in a diverse
array of traffic scenarios. Further details and results will be presented in the full paper.

2 METHODOLOGY

UATIP’s Definition: UATIP involves extending the predictive capability of any ML incident
prediction model to not only forecast traffic incidents but also estimate the uncertainty associated
with each prediction. Formally, UATIP is defined as follows:

UATIP : (X t
l ,Features) → {(ytl , utl)|ytl ∈ {0, 1}}, (1)

where X t
l represents any form of data input (e.g., traffic graphs, vectors, images) corresponding

to a location l at time t, and utl is the uncertainty measure associated with the prediction ytl . This
measure quantifies the model’s confidence in its prediction, providing a nuanced interpretation
of the predictive output that aids traffic management authorities in making informed decisions
based on both the prediction and its reliability. The challenge lies in the precise estimation of
this uncertainty, considering the dynamic and complex nature of traffic patterns and incident
determinants at different locations. In our experiments, we apply UATIP to Sub-area Traffic
Incident Prediction (STIP) (Tran et al., 2023) where l is defined as a sub-area. Given a large
traffic network, let Sc denote a set of all sub-areas with radius c within the network. For each
sub-area sj ∈ Sc, and at any given time t, consider m different sources of data that create m
subgraphs Gt

sj = {G1
sj , G

2
sj , . . . , G

m
sj}

t, each representing one of the m data sources pertinent to
sub-area sj and timestamp t. STIP aims to process this set of subgraphs Gt

sj , along with time-
variant traffic features (e.g., flow, occupancy, speed) from the period [t−Tb, t] and time-invariant
features (e.g., link characteristics, day of the week, public holidays), to generate a binary output
indicator ytsj . This indicator is 1 if at least one traffic incident occurs within sj during the time
period [t + Tp, t + Tp + Td] and 0 otherwise, where Tp is the prediction horizon and Td is the
width of the prediction window. With this application context, our proposed model is briefly
illustrated in Figure 1. Particularly, given any trained incident predictor f(), which was trained
on Xtrain including i different training incident and non-incident cases in total, UATIP takes
input as conventional TIP models. For simplicity, we assume the use of only loop detector data
sources; hence, the input would be Gt

sj with respect to UATIP’s definition. UATIP extracts
feature (encoded) vector f(Gt

sj ) from the traffic graph input Gt
sj using f()’s last hidden layer.

Subsequently, f(Gt
sj ) is used as input to a K-Nearest Neighbors (K-NN) algorithm, which assesses

the proximity of the input’s feature vector f(Gt
sj ) to the training set Xtrain, given the feature

vectors f(Xtrain). Although different distance measures can be employed, K-NN computes K
minimum Euclidean distances d(i) between feature vector f(Gt

sj ) and feature vectors f(Xtrain).
AGGREGATION then combines (SUM or MEAN) these K distances into an uncertainty score,
informing the certainty level (utsj ) of the prediction for the given input Gt

sj . Finally, this score
can be used to determine whether the current prediction is confident, given a decision threshold.

3 PRELIMINARY RESULTS

How UATIP performs in estimating uncertainty? We applied the MSGNN incident
predictor, as delineated in Tran et al. (2023), using traffic data from loop detectors in Brisbane

TRC-30 Original abstract submittal



Thanh Tran, Dan He, Jiwon Kim and Mark Hickman 3

Figure 1 – Overall framework of Uncertainty-aware Traffic Incident Prediction

(BRIS) and Gold Coast (GC), Australia, in 2017. Our model training utilized a 15-minute
prediction horizon (Tp) and a 5-minute prediction window (Td), with Xtrain comprising 758
cases and Xtest with 324 cases, split in a 7:3 ratio as instructed by Yu et al. (2021), Tran et al.
(2023). A ’missing rate’ F simulated sensor outages by introducing ’-1’ to denote missing data for
link data (i.e., node features of inputs G), reflecting real-world data incompleteness. UATIP’s
discrimination between prediction certainties was tested under varied data availabilities and
regional differences between Brisbane and Gold Coast networks. To test UATIP, we needed
two types of datasets: uncertain and certain datasets. We used inputs from Xtest and labeled
them as ’certain predictions’ Xcertain since Xtest is in-distribution data with respect to Xtrain.
To construct uncertainty testing datasets, we labeled 324 instances as one uncertainty dataset
Xuncertain, including inputs from Xtest but at missing rates of F = 10%, and similarly, two more
uncertainty sets Xcertain with F = 50%; 80%. Another uncertainty dataset was constructed by
obtaining 324 cases from Gold Coast, used to represent inter-regional uncertainty, indicative of
disparate network structures and traffic behaviors. The model’s capability to accurately detect
uncertain from certain predictions for inputs from Xcertain and Xuncertain is demonstrated in
Figure 2. Particularly, across low to high uncertainty scenarios, the model consistently identified
actual certain predictions from Xcertain with lower uncertainty scores and uncertain predictions
with higher scores (closer to 1.0). The inter-regional uncertainty analysis revealed comparable
distribution patterns, indicating that the model trained on BRIS data may be generalizable to
GC data, suggesting its broad utility across different regions, which can be explained by the
cross-region applicability of MSGNN.

Figure 2 – UATIP’s uncertainty scores distribution by true labels under uncertainty scenarios.

UATIP was employed to evaluate the uncertainty of various predictions. The predictor f()
extracted high-dimensional feature vectors from Xtrain, Xcertain, and Xuncertain. Utilizing t-
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Figure 3 – 2-Dimension visualisation of uncertainty scores for multiple inputs.

distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality reduction, these feature
vectors were visualized in a 2D space as shown in Figure 3. In this figure, the top plots show the
training data with red and blue dots for incidents and non-incidents, respectively, while predic-
tions are marked with green and orange triangles for certain and uncertain outcomes. Following
UATIP’s processing, the bottom plots display predicted uncertainties with larger orange circles
indicating higher uncertainty. Notably, these larger circles correlate with the orange triangles,
identifying inputs that lead to uncertain predictions. This visual indicator is especially valuable
when a deployed model, denoted as f , records a significant number of uncertain predictions,
marked by many large orange circles, within a specific timeframe such as a day, surpassing a
pre-established threshold. This could then serve as a prompt for selective retraining.

4 DISCUSSION & FUTURE RESEARCH

Results with MSGNN demonstrate UATIP’s ability to effectively estimate uncertainty scores
across various settings, as shown in Figure 2. This highlights its potential as an interpretive tool
in large-scale incident prediction, distinguishing high-certainty predictions from those requiring
cautious interpretation, as depicted in Figure 3. In the future, it could enhance the model’s
efficiency by advocating selective retraining of highly uncertain cases rather than all inputs.
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