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1 INTRODUCTION

Vehicle repositioning in the ride-hailing market addresses the significant spatiotemporal imbal-
ance between supply and demand. Studies such as Xu et al. (2018) and Zong et al. (2018)
highlight that a large portion of orders go unserved and drivers spend extensive periods without
passengers. This has spurred research into developing effective repositioning algorithms (Zhu
et al., 2024, Chen et al., 2024). Traditional grid-based methods, which direct drivers from one
grid to another using the shortest route, often fail to optimize for critical metrics such as driver
utilization or platform profit, focusing instead on minimizing travel time or distance. In this
context, repositioning should aim primarily at securing the next passenger efficiently. Although
Monte Carlo Tree Search (MCTS) has been effective in various applications, it struggles with
temporal adaptability and demands extensive training time (Garg & Ranu, 2018). To address
these challenges, we introduce a novel Top-to-Bottom Reposition Method (T2B-RM) integrating
Reinforcement Learning (RL) and MCTS. The first stage leverages Mean-Field Multi-Agent RL
(MF-MARL) to guide the regional movement of empty vehicles, deciding whether to stay or
move to a new area. The second stage applies MCTS to determine the optimal routes within
the targeted area, maximizing potential passenger pickups. This dual-layer approach ensures
that vehicles are not only directed efficiently but also positioned optimally within target zones to
enhance service availability. Our extensive experiments in Manhattan verify the efficacy of our
method, demonstrating significant improvements in key performance metrics like platform total
revenue (+2.4%) and order matching rate (+2.9%). These results substantiate our approach’s
potential in enhancing operational efficiencies in the ride-hailing industry.
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2 METHODOLOGY

Figure 1 – Illustration of Top-to-Bottom Reposition Framework

We introduce the Top-to-Bottom Repositioning Method (T2B-RM) as depicted in Figure 1. This
hierarchical repositioning strategy comprises two main stages:

1. MF-MARL Stage: In the initial stage, empty vehicle agents operate within a predefined
grid-based environment. Each agent’s state is characterized by (grid_id, time_step) and the
possible actions include staying, or moving left, right, up, or down. The reward function is
designed to compute the average revenue derived from drivers selecting identical actions. This
stage leverages the Actor-Critic method of reinforcement learning to facilitate decision-making.

2. MCTS Stage: Following the selection of a target grid based on the RL policy, agents
transition to the second stage, where MCTS is employed. This stage focuses on route generation,
utilizing a heuristic to optimize the placement of orders in a timely manner. The implementation
details of this stage are encapsulated in Algorithm 1.

Algorithm 1 MCTS
1: Initialize reward of each node i to 0, t ← 0
2: repeat
3: Generate route R via UCB policy
4: if R finds a customer C then
5: ∀i′ ∈ R\i, reward(i′) = order revenue - travelling cost
6: else
7: ∀i′ ∈ R\i, reward(i′) = - traveling cost
8: end if
9: until maximum search depth is reached

10: Update reward X(i) for each node in R
11: t ← t + 1

To integrate the two stages, a weighted harmonic mean combining Q-value in RL stage, average
Upper Confidence Boundary (UCB) in the target grid in MCTS stage (denoted as w̄, calculated
with Equation 1), and the change in w̄ (denoted as ∆w) is calculated and used to guide the RL
agent (as shown in Equation 2).
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UCBi(t) = Xi(t) + c

√
ln t

ni(t)
, where ni(t) indexs # of trials on node i at time t (1)

π∗(s) = argmax
a∈A

(β1qπ(s, a) + β2w + β3∆ω) , where β1 + β2 + β3 = 1 (2)

3 RESULTS

3.1 Data

The study analyzes 65,955 ride-hailing orders from Manhattan, captured between 5:00 am and
10:00 am on May 4, 2015 (Monday). The focus is on the Manhattan borough’s road network,
which comprises 4,474 nodes and 9,682 edges. Orders with origins or destinations outside Man-
hattan were excluded. The dataset details are presented in Table 1.

Table 1 – Dataset Statistics

Dataset # of Drivers # of Orders Order Sample Rate

Low Density 100 6,589 10%
High Density 500 32,967 50%

3.2 Model Results

In this study, we conducted comprehensive experiments on two datasets with different density
levels, demonstrating that the T2B-RM consistently outperforms existing benchmarks by ap-
proximately 2% across all key performance metrics (as evidenced in Table 2). The MF-MARL
model also showed enhanced performance over the standard MCTS model, which in turn ex-
ceeded the efficacy of a random strategy. This improvement was particularly notable in the
low-density dataset.

All models achieved similar outcomes in terms of order waiting times, with minimal variation in
time allocation between matching and pickup in low-density scenarios.

Table 2 – Experiment Results: On Low and High Density Dataset

Models Platform Revenue/$ Matching Rate Occupancy Rate Active Delivery Rate

Low High Low High Low High Low High

Random 15,418 86,100 36.8% 41.16% 65.2% 69.03% 58.28% 64.99%
MCTS 16,852 90,574 40.51% 43.61% 71.95% 73.09% 63.79% 68.30%
MF-MARL 17,000 91,908 40.83% 43.92% 72.05% 74.2% 64.16% 69.45%
T2B-RM 17,403 92,849 42.00% 44.5% 73.97% 74.53% 65.62% 70.16%

(+2.4%) (+1.02%) (+2.9%) (+1.32%) (+2.7%) (+0.44%) (+2.3%) (+1.02%)

Models Waiting Time/s Matching Time/s Pick-up Time/s

Low High Low High Low High

Random 168 161 86 103 82 58
MCTS 165 162 79 101 86 61
MF-MARL 164 160 80 100 84 60
T2B-RM 164 157 79 99 85 58

As shown in Figure 2, in the MCTS stage of our model, we tested various search depths and
observed that larger search depths generally yield better results. However, the rate of improve-
ment diminishes gradually with increased depth: there is a 6% improvement in platform revenue
when increasing the depth from 50 to 100, but only around a 1% improvement when increasing
it from 100 to 150.
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(a) Total Reward
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(b) Matching Rate
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(c) Occupancy Rate
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(d) Active Delivery Rate

Figure 2 – MCTS Maximum Search Depth: 50, 100 and 150

4 DISCUSSION
In conclusion, our study addresses the crucial challenge of vehicle repositioning in the ride-
hailing industry, which is vital for balancing supply and demand across urban areas. Previous
methods that emphasize minimizing travel distances or times do not necessarily align with the
primary goal of maximizing driver engagement with potential passengers. Our proposed T2B-
RM innovatively combines an MF-MARL system with an MCTS system. This methodology not
only guides vehicles to appropriate regions but also ensures optimal route selection within those
regions to enhance passenger pickup rates. Our findings from extensive experiments conducted in
Manhattan demonstrate that this approach can significantly improve key performance indicators
such as platform revenue and matching rates. These results underscore the potential of our
algorithm to transform operational strategies in the ride-hailing sector, making it a valuable tool
for companies seeking to optimize their services and maximize efficiency.
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