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1 INTRODUCTION

Understanding human travel behavior has always been a crucial part of transportation planning.
Travel behavior can be described by many attributes, such as the mode of transportation, the
purpose of the travel, the choice of destination, and the time of departure. Conventional travel
behavior prediction relies on using numerical data to construct a mathematical model to represent
human preferences (Ben-Akiva & Lerman, 1985, Mo et al., 2021, Wang et al., 2021).

Since last year, large language models (LLMs) have generated a tremendous amount of ex-
citement in research due to their advanced language interaction and interpretation capabilities
(Zhao et al., 2023). In transportation, studies have shown the abilities of GPT in making mo-
bility predictions which outperforms state-of-the-art time-series machine learning models (Wang
et al., 2023b). However, whether LLMs can predict travel behavior well is unclear.

In response to the above inquiry, this research aims to analyze the ability of LLMs to make
travel behavior predictions. Through prompt engineering, we establish a zero-shot prompting
framework that includes the prediction task, travel characteristics, passenger attributes, and
guidance to LLM with transportation domain knowledge. The performance of the framework is
tested and compared with classical models such as multinomial logit, random forest, and neural
networks.

There are three major contributions: 1) The research presents a framework for predicting
travel behavior using LLMs. To the authors’ knowledge, this is the first effort to harness the
semantic power of LLMs for travel behavior prediction. 2) The research demonstrates the pro-
posed framework’s adaptability to new scenarios and effectiveness in cold start situations through
two real-world case studies, travel mode choice and trip purpose predictions. Notably, the pro-
posed framework does not require any training samples yet produces competitive results when
compared to classical benchmark models. 3) The research proposes a paradigm shift in travel
forecasting, moving from reliance on numerical data to leveraging the reasoning abilities of LLMs
for ease of understanding the output.
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2 METHODOLOGY

Preliminaries. In this study, we introduce the pre-training based on GPT’s framework for
unsupervised multitask learning (Radford et al., 2019). The objective of pre-training can be
expressed as:

n
0" = arg max Z Z log P (wgu) | w§u), wéu), . 7“’1@15 0) (1)
ueU 1=1
where U is the set of all training corpus, wl(u) is the i-th token of the u-th sequence. Given the
trained parameter 8*, we can use the model to generate answers for various tasks:

s* = argmax P(s | (Input, Task); 8*) (2)
S

where s* is the output sequence with the largest probability (or relatively large probability
depending on the searching algorithm and degree of randomness). s* is generated word by word
until the “|End]” token is found.

Framework for understanding travel behavior. Given LLMs provide a generalized mul-
titask solver, it is possible to use them as a predictor for people’s travel behavior prediction. The
“(Input, Task)” in Eq. 2 is referred to as prompt in LLMs. The framework of the LLM-based
travel behavior prediction is shown in Figure 1. Here we use the travel mode choice and trip
purpose prediction to illustrate. The input information will be organized and embedded into the
prompt (i.e., prompt design). The prompt is fed into an LLM and outputs the prediction and
associated reasons. It is worth noting that no supervised training step is needed.

Information Prompt design
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demographics

Figure 1 — Conceptual framework

Prompt design. Building upon existing prompting strategies, we carefully develop context-
inclusive prompts to enhance travel behavior prediction, including data input, semantic guidance,
and output specification. The data input includes three sub-components: 1) task descriptions, 2)
structural data of travel characteristics, 3) descriptive data of individual attributes. The semantic
guidance leads the LLM thinking with domain knowledge, numerical comparison, and strategies
like Chain-of-Thought (Wei et al., 2022) and Plan-to-Solve (Wang et al., 2023a). The last part
specifies the output with both the predictions and reasoning, which will help us understand the
output, improve prompt design, and help LLM to improve its performance. An example of the
final prompt for mode choice prediction is shown in Figure 2. The text in square brackets is for
reference and not included in the actual prompt.
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Example 1: Travel mode choice

[Task description] Your task is to predict a person's travel mode choice from Train, Car, and Swissmetro based on
travel time, travel cost information of each mode, and the person's attributes.

[Structure data] The travel time and cost for each mode is expressed as the following dictionary format: {Travel
time: {Train: 202, Car: 160, Swissmetro: 97}, Travel cost: {Train: 108, Car: 136, Swissmetro: 14@}}

[Thinking guidance with domain knowledge] Swissmetro has the lowest travel time. Choosing it will save 39% travel
time compared to Car and save 52% travel time compared to Train. Train has the lowest travel cost. Choosing it will
save 21% travel cost compared to Car and save 23% travel cost compared to Swissmetro.

[Descriptive data] The person is not a regular Train user. He/She does not own the Train annual pass.

[Output specification] Please infer what is the mostly likely travel mode that the person will choose. Organize
your answer in a JSON object with two keys: "prediction" (the predicted travel mode) and "reason"” (explanation that
supports your inference).

[Thinking guidance with domain knowledge] Please consider the following aspects:

1. People are more likely to choose a travel mode with less travel cost and travel time, especially those with
significant cost or time saving. The trade off between time and cost can be quantified using value of time.

2. Regular Train users may prefer to use Train.

3. Owners of Train annual pass are more likely to choose Train.

Figure 2 — Example complete prompts for travel behavior prediction

3 RESULTS

Data. Mode choice prediction is assessed on the Swissmetro stated preference survey dataset,
where users select from train, car, and Swissmetro given the corresponding travel attributes.
Trip purpose prediction is evaluated using the 2017 US National Household Travel Survey, which
tracks daily trip, socio-demographic features, and trip purposes like working, social, shopping,
and others. We use balanced sampling to randomly select 1,000 entries for the large training
set, 10 for the small training set (training sets are for benchmark models only), and 200 for the
testing dataset. Results are derived from the average of 5 random samples.

Baselines. The LLM-based prediction model is compared against three benchmark models:
1) multinomial logit (MNL), 2) random forest (RF), and 3) neural networks (NN). MNL is the
canonical travel behavior prediction tool, while random forest and NNs are proven to perform
well empirically (Wang et al., 2021).

Experimental Setup. The LLM employed is GPT-3.5 (version gpt-3.5-turbo-1106), which is
one of the most advanced and widely used LLMs with open APIs. The prompts used follow
the structure of Figure 2. We set the temperature to 0 to avoid randomness in the output.
The benchmark models are implemented using the Python scikit-learn package with the default
hyper-parameters.

Travel Mode Choice and Trip Purpose Estimations. All models are evaluated based on
prediction accuracy and weighted F1-score. Results are shown in Table 1, with the best results
highlighted in boldness in each training set size. Without using any training samples, the LLM-
based prediction has shown competitive performance compared to benchmark models trained on
large training sets and outperforms them when their training sample size is limited.

Table 1 — Combined Model Prediction Results

.. . Mode Choice Trip Purpose

Model | Training Set Size Accuracy F1 Score Accuracy F1 Score

MNL large 0.604 + 0.037 0.595 4+ 0.034 | 0.418 + 0.043  0.401 + 0.043
RF large 0.617 £ 0.025 0.613 £+ 0.026 | 0.459 + 0.046  0.451 £ 0.047
NN large 0.641 £ 0.030 0.637 £ 0.028 | 0.463 £+ 0.047 0.455 £ 0.049
MNL small 0.469 £+ 0.075 0.457 £ 0.080 | 0.284 £ 0.058 0.275 £ 0.052
RF small 0.455 £+ 0.068  0.441 £+ 0.074 | 0.338 £+ 0.030 0.329 £ 0.038
NN small 0.462 + 0.044 0.455 4+ 0.046 | 0.322 + 0.077 0.311 £ 0.065
LLM zero-shot 0.590 £+ 0.051 0.580 £+ 0.054 | 0.393 £+ 0.020 0.332 £+ 0.019
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Table 2 — Exzample case of using LLMs for travel mode choice prediction

Input: Travel time: Train: 230, Car: 247, Swissmetro: 111; Travel cost: Train: 56, Car: 169, Swiss-
metro: 66. The person is a regular Train user. He/She does not own the Train annual pass.

Prediction and Actual Labels: Train (MNL prediction is Swissmetro) vs. Train

Reason: The person is a regular Train user and does not own the Train annual pass. Although Swissmetro
has the lowest travel time, the person’s regular use of Train suggests a preference for this mode
of transportation. Additionally, Train has the lowest travel cost, which may also influence the
decision.

Reasoning Ability. LLMs offer a distinctive advantage by articulating the reasoning behind
their predictions. As demonstrated in Table 2, the LLM not only accurately estimates the
individual’s travel mode preference but also provides a logical explanation including regular
usage of travel modes and their cost efficiency, an aspect where traditional models like MNL may
not perform as effectively.

4 DISCUSSION

In this study, we show the potential of using LLM for the complex travel behavior prediction
task without training samples. The performance of LLM-based predictions is competitive with
traditional models like MNL, RF, and NNs, especially when training data is scarce. This makes
LLMs ideal for rapid adaptations to new scenarios. Besides, LLM can also output explanations
for inference despite some reasoning errors and hallucination problems.

This research presents a preliminary result, there is a lot of ongoing and future work. 1) Ab-
lation studies can be conducted to test the effectiveness of different components in the prompt
design. 2) The current prompt is a zero-shot prompt. Future studies can include some repre-
sentative samples in the training data set as a few-shot prompt for in-context learning. The
few-shot prompt needs to guide the LLMs to learn to quantify the value of time (or other impor-
tant concepts for prediction) using the limited samples. 3) More experiments can be conducted
with other prompting strategies and variants of LLMs.
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