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1 INTRODUCTION

With the rise in computing power, the potential for using activity models to replicate individual
movements has grown. Recent progress in studying activity simulators using Bayesian Networks,
referred to as BN-ACT, has been reported(Joubert & De Waal (2020), Sallard & Balać (2023),
De Waal & Joubert (2022)). BN-ACT enables data-driven assessments of variable impacts and
correlations, offering the notable advantage of constructing the model structure without analyst
input.

Conversely, as the number of variables increases, the potential network structures multiply,
and the cost of searching for the optimal structure escalates. Furthermore, when generating
activity chains, the sequence of activities must be determined. Including the sequence of ac-
tivities as output targets of the Bayesian Network (BN) complicates the search for the network
structure. This study introduces dynamic objects into BN-ACT to reduce structural search costs
and represent the sequence of activities. Additionally, BN-ACT faces issues such as overlapping
times between multiple activities and trips. To address this, we propose algorithms for gen-
erating validated trip chains. We test the effects of these proposed dynamic objects and trip
chain generation on improving prediction accuracy using data from the Person-Trip survey in
the Tokyo metropolitan area.

2 METHODOLOGY

2.1 Dynamic object-oriented Bayesian Networks

The Object-Oriented Bayesian Network (OOBN) is an extension of the BN that incorporates
objects (Koller (1997)). An object in this context is a collection of variables that can store
multiple values. This arrangement helps restrict the network structure among variables from
different objects, thus reducing the number of candidates in a search for the optimal Bayesian
Network structure. Weber & Jouffe (2006) introduced Dynamic OOBN to manage temporally
dependent variables, allowing connections only between consecutive time-related variables. In
attempts to replicate activities, such as in the work by De Waal & Joubert (2022), this time-sliced
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approach is used to establish dependencies within similar time series. However, they assume that
the network structure remains constant across all time periods and is predetermined externally.

This study endogenously considers dependencies among variables within dynamic objects for
structural BN estimation. Variables related to a single activity are grouped into one dynamic
object, while correlations between different dynamic objects are only made with variables from
the subsequent activity. Additionally, it’s assumed that variables related to individuals can
affect all activity-related variables; therefore, these agent-related variables are not included in
the dynamic objects. These methods allow for more flexible dependencies among variables and
improve predictability. At the same time, they simplify the search for optimal BNs and support
the creation of explainable BNs.

2.2 Validated Activity Chain Generation

We propose a generation algorithm to ensure the activity chains produced by the BN are valid. In
our BN structure estimation process, each activity is handled using a dynamic object. The total
number of activities is determined as one of the BN’s agent variables. Our generation algorithm
then creates activities to meet this specified total. Additionally, activity chains generated by
BN-ACT may have overlapping activity and travel times, leading to implausible sequences. To
resolve this, we use activity resampling to address the issue of overlapping times. If the sum of
the start time, duration time of the i -th activity, and travel time to the next activity exceeds
the start time of the subsequent activity, it is identified as a time constraint violation. When
this happens, we resample all activities from the i+1 -th activity onwards. Both algorithms
proposed for generating validated activity chains have also been implemented in existing agent-
based activity simulators (ex. Roorda et al. (2008)).

3 RESULTS

3.1 Data and Settings

To validate our proposed approach, we use real data from the 6th Tokyo Person Trip Survey
(referred to as PT-Data), conducted in the Greater Tokyo Area in 2018. This dataset represents
approximately 1% of the population in the region, providing detailed information on individual
movements over the course of a day, collected through survey forms. The dataset includes a total
of 32 variables: 14 related to household and personal attributes assigned to each individual, and
18 related to trip characteristics assigned to each movement.

The case study utilizes 13 variables in constructing the BN. Dynamic objects, which represent
individual trips and activities, are defined by seven variables: trip purpose, destination type,
number of facilities in the destination zone, trip start time, travel time, activity duration, and
primary mode of transportation. Each of these variables is divided into four to five categories
for use in the BN. Six agent variables that influence all trips and activities are used: age, gender,
employment type, driver’s license possession, vehicle availability, and number of activities. The
number of activities is capped at five, while the other variables are divided into two to three
categories for use. According to PT-Data, less than 1% of individuals in the sample engage in
more than five activities per day. By setting an upper limit of five activities and incorporating
dynamic objects, the Bayesian Network is built using a total of 41 variables, calculated as (7
variables per activity × 5 activities) + 6 agent variables. Approximately 300,000 individuals
exhibited these behaviors, with 80% of the data used for training and 20% used for validation in
testing. To demonstrate the effectiveness of the proposed model, we use an existing activity model
(Joubert & De Waal (2020)), a type of Bayesian Network (BN) without object introduction, as
a comparative model.
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Figure 1 – Estimated BN graph by the proposed approach
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(a) Test data

Explanatory variable 𝐹𝐹

(b) Proposed BN

Explanatory variable 𝐹𝐹

(c) Existing BN

Figure 2 – Comparison of mutual information

3.2 Validation Results

First, the graph structure obtained from the proposed BN-ACT model is illustrated in Figure 1.
In this graph, variables are depicted as nodes, and influences between variables are depicted as
edges. Additionally, connections among the same variables within dynamic objects representing
prior activities are indicated by orange-filled nodes. The large number of filled nodes demon-
strates that the influences among dynamic objects are effectively captured. Furthermore, the
distinct graph structures within each dynamic object highlight the importance of estimating the
structures for each dynamic object separately. Additionally, the rate of infeasible schedules gen-
erated by the existing BN was 5.44%, while the proposed model significantly improved this rate
to 1.72%. Furthermore, without applying the resampling algorithm outlined in Section 2.2, the
rate was 4.45%, clearly demonstrating the effectiveness of the proposed resampling algorithm.

Second, we assess how new information from one node affects the expected changes in the
posterior probability distribution of a target node. Mutual Information (Marcot (2012)) calcu-
lates the reduction in entropy when new data is added from one variable in the network. Let
Q represent the query variable, and F represent the explanatory variable, as shown in Figure 2.
Cells with higher values, shown in yellow, indicate a greater degree of mutual dependency. The
proposed BN model (Figure 2b) successfully identifies inter-variable dependencies. Our model
accurately reproduces both strong and weak dependency pairs. Conversely, the existing BN
model (Figure 2c) fails to replicate pairs with weak dependencies in the test data.

Third, the generation rates for activity chains by type are evaluated and presented. Figure
3 shows only the major activity chains. The proposed BN closely matches the distribution
of activity chains in the test data. However, the reproducibility of the existing BN is poor,
particularly in underestimating less common activity chains with frequencies around 0.05. The

TRC-30 Original abstract submittal



J. Urata, Y. Mochizuki and E. Hato 4

pr
ob

ab
ili

ty
legends
h: home 
w: workplace
b: business
s: personal matters 
e: school

Figure 3 – Composition ratio of generated activity chain

Mean Absolute Percentage Error (MAPE) for the proposed BN was 4.0%, while the existing BN
had a much higher error rate of 38.1%. The proposed BN effectively captures the relationships
between variables across different activities, leading to improved reproducibility of activity chains
that involve multiple activities.

4 DISCUSSION

This study proposes a Bayesian Network (BN) activity model that can flexibly build model struc-
tures in a data-driven way, and validates the model using real data from the Tokyo metropolitan
area. The model effectively estimated the differences in dependencies among variables caused
by the sequence of activities using a dynamic object-oriented BN. By incorporating resampling
that accounts for time constraints, it successfully generated plausible activity chains.

References
De Waal, Alta, & Joubert, Johan W. 2022. Explainable Bayesian networks applied to transport vulner-

ability. Expert Systems with Applications, 209, 118348.
Joubert, Johan W, & De Waal, Alta. 2020. Activity-based travel demand generation using Bayesian

networks. Transportation Research Part C: Emerging Technologies, 120, 102804.
Koller, D. 1997. Object-oriented Bayesian networks. In: Proc. of 13th Conf. on Uncertainty in Artificial

Intelligence, 1997.
Marcot, Bruce G. 2012. Metrics for evaluating performance and uncertainty of Bayesian network models.

Ecological modelling, 230, 50–62.
Roorda, Matthew J, Miller, Eric J, & Habib, Khandker MN. 2008. Validation of TASHA: A 24-h activity

scheduling microsimulation model. Transportation Research Part A: Policy and Practice, 42(2), 360–
375.

Sallard, Aurore, & Balać, Miloš. 2023. Travel demand generation using Bayesian Networks: an application
to Switzerland. Procedia Computer Science, 220, 267–274.

Weber, Philippe, & Jouffe, Lionel. 2006. Complex system reliability modelling with dynamic object
oriented Bayesian networks (DOOBN). Reliability Engineering & System Safety, 91(2), 149–162.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers 23H01527 and the Fusion Oriented
Research for Disruptive Science and Technology Program Number JPMJFR225Q by the Japan
Science and Technology Agency (JST).

TRC-30 Original abstract submittal


	INTRODUCTION
	METHODOLOGY
	Dynamic object-oriented Bayesian Networks
	Validated Activity Chain Generation

	RESULTS
	Data and Settings
	Validation Results

	DISCUSSION

