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1     INTRODUCTION 
 

Perimeter control, based on aggregate dynamics modeling using network Macroscopic Fundamental 

Diagrams (MFDs), has been shown effective in congestion mitigation and throughput maximization 

for urban networks comprised of a single or multiple homogeneous regions. However, in dense urban 

areas, local pockets of congestion might form, resulting in traffic heterogeneity, which diminishes 

the effectiveness of perimeter control. To this end, an integrated framework that regulates both the 

inter-regional exchange flows (viz., perimeter control) and intra-regional traffic signals is proposed, 

wherein the upper-level perimeter control helps maintain regional accumulations around the critical 

levels while the lower-level signal control combats local congestion to improve traffic homogeneity. 

 

Early endeavors in such frameworks often require the exchange of information between the levels 

to coordinate control objectives, thus demanding extensive communication infrastructure. To relieve 

such requirements, frameworks with independent controllers are receiving increasing interest. In 

(Keyvan-Ekbatani et al., 2019), a modified SCATS strategy and a volume-based approach for local 

signal control are combined with a proportional-integral (PI) type perimeter controller. In (Tsitsokas 

et al., 2023), the PI-type regulator is used with the max pressure (MP) controller, while in (Su et al., 

2023) the perimeter control problem is solved with reinforcement learning (RL). Following this line 

of research, this work studies the joint perimeter and signal control problem, where both levels are 

controlled by RL agents. While RL has been applied to signal control extensively and is also gaining 

momentum in perimeter control applications, its effectiveness hasn’t been investigated for the joint 

control problem. This work thus extends the frameworks in (Su et al., 2023; Zhou and Gayah, 2024) 

to consider RL for lower-level signal control. A multi-timescale multi-agent training approach is 

presented, with its effectiveness evaluated in simulated single-region networks. The experiment 

results show the presented approach is highly comparable (and often times superior) to a baseline 

scheme comprised of upper-level Bang-Bang control and lower-level MP controller (Varaiya, 2013). 

 

2     A MULTI-TIMESCALE RL APPROACH 
 

The joint perimeter and signal control problem is formulated as a Markov decision process, where 

the environment represents a simulated single-region network (see Figure 1). An upper-level agent 

(dubbed U-RL) selects actions at regular intervals of Δ𝑇 that determine the green times at perimeter 

intersections. Similarly, a lower-level agent (dubbed L-RL) selects actions every Δ𝑡 ≤ Δ𝑇 to set the 

signal timings for signal control intersections. Concretely, at each interval Δ𝑇, the U-RL takes as 

input the accumulation, regional speed and flow, and standard deviation of lane-level vehicle counts. 

It then selects among {0,0.2,⋯ ,0.8,1.0} as the ratio of green times allocated to entering vehicles at 

perimeter intersections. At the end of interval Δ𝑇, the U-RL receives a reward from the environment, 
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which is the traveled distance of all vehicles to encourage higher traffic throughput. The Double 

DQN algorithm and a distributed learning architecture are adopted to facilitate training for U-RL, 

and to consider the delayed impacts of perimeter control, multi-step return is used. 

 

Similarly, the L-RL takes actions every Δ𝑡 but does so for each intra-regional intersection. For this, 

the parameter sharing technique is utilized to reduce training time since many intersections exist. 

Specifically, each intersection is controlled by an agent, and all these agents share the same model 

weights. Each of them receives individualized information and selects individualized actions as well 

as obtains individualized rewards. Afterwards, all state-action-reward transitions are pooled together 

to train the L-RL, and the updated model weights are shared by all agents again in the subsequent 

action-taking processes. Here, the input includes the average number of vehicles (weighted by turn 

ratios) of the four downstream approaches, the grouped upstream vehicle counts, the current phase, 

and the regional accumulation. The action specifies which phase to choose for each intersection, and 

the reward is the (normalized) number of discharged vehicles to encourage higher traffic production.  

 

A few further remarks are provided here for the multi-timescale multi-agent training approach. First, 

the two agents interact with the environment simultaneously, but at different timescales (Δ𝑇 and Δ𝑡). 
As such, a state-action-reward transition is obtained every Δ𝑡 for L-RL but every Δ𝑇 for U-RL. Also, 

following the popular independent learning paradigm, the two agents are trained separately, thus 

reliving the need for increasing communication infrastructure. Further, with the distributed learning 

architecture, both L-RL and U-RL are updated only once per iteration. However, such updates can 

utilize all transitions collected during the iteration which helps improve convergence for the agents.  

 

To demonstrate the presented method, a variety of joint control schemes are utilized for comparison. 

At the upper level, the Bang-Bang (BB) policy is used which builds upon MFD-based modeling and 

alternates its action by comparing the regional accumulation to the critical value. At the lower level, 

the MP controller (Varaiya, 2013) is adopted. Further, a non-adaptive signal control scheme (fixed 

time, FT) is used together with the no control (NC) policy at the upper level to benchmark the lower-

bound performances. The full list of baselines includes NC+FT, NC+MP, BB+FT, and BB+MP. 

 

 
Figure 1. The simulated single-region urban network. 

 

3     EXPERIMENTS 
 

3.1  Single-region urban network setup 
 

Figure 1 shows the simulated single-region network. Each link is 500m long with three lanes in each 

direction. The free flow speed is 50 km/h and the saturation flow 1800 veh/h/lane. All intersections 
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are signalized, and the perimeter intersections have a shared cycle length of 90s (Δ𝑇 = 90s). The 

minimum and maximum green times are respectively 5s and 87s. The intra-regional intersections 

either adopt a FT signal plan or are controlled by the MP policy or L-RL. The FT plan, MP policy, 

and L-RL all share the same set of phases (to make sure the simulation results are comparable), but 

their sequence order and duration may differ. The simulation step is set to 1s and Δ𝑡 = 10s. 

 

The origins are evenly distributed across the entire network whereas the destinations are only located 

inside the protected region. A strong directional demand is assumed from outside of the region, 

which lasts for 90 minutes as followed by a recovery period of 30 minutes. The simulated vehicles 

are routed using the stochastic C-logit model, and a subset (60%) can perform adaptive rerouting at 

regular intervals of 3 minutes. Initially, strong demands were assumed to fill up the network and to 

obtain the MFD plot, and the critical accumulation (used by BB policy) is determined as 3000 veh. 

 

3.2  Experiment results 
 

The objective of the joint control framework is to maximize network throughput, i.e., cumulative 

trip completion (CTC), and the learning curves express the evolution of CTC over training iterations; 

see Figure 2(a). The baselines have constant CTCs as they are not learning-based methods, and the 

bands reflect the randomness in the simulation. As can be seen, the joint control agent (U-RL+L-

RL) can learn effectively to realize performances directly comparable BB+MP. This is notable since 

the BB controller is optimal for single-region perimeter control whereas the MP policy is an 

established signal controller with proven ability of throughput maximization. Figure 2(b) presents 

the cumulative count curves by each method, where “Exit” indicates the cumulative trip completion 

and “Entry” the cumulative number of vehicles from either demand generation or arrival from 

outside of the region. As shown, without perimeter control, using the MP policy yields much higher 

cumulative vehicle entry and trip completion than FT. Yet, the overall trip completion by MP alone 

is rather modest as it cannot handle oversaturated conditions well; however, this can be remedied by 

using BB policy at the upper level, since it can delay vehicle entry, thus allowing for more trip 

completion and vehicle entry later on. The curves by BB+MP and U-RL+L-RL exhibit a high level 

of similarity, and by comparing the differences between (as well as the differences of areas under) 

the entry and exit curves, one can conclude U-RL+L-RL realizes the steadiest accumulation and 

smallest total travel time among all control methods, which showcases its competitiveness.  

 

a)  b)  

Figure 2. Learning curve (a) and cumulative count curves (b). 

 

To evaluate the robustness of U-RL+L-RL, measurement noise of accumulation is considered, in the 

form of a mean-zero normal distribution ℕ(0, 𝛿2). The BB policy is prone to such noise as it acts 

upon the accumulation, contrary to NC methods. Here, the noise level 𝛿 ranges from 25 to 300, and 

the realized CTC values by each method are shown in Figure 3(a), where the error bars indicate 95% 
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confidence interval. As shown, BB+FT has decreasing CTCs that can even be smaller than NC+MP, 

whereas both BB+MP and U-RL+L-RL are extremely robust against the noise. Importantly, note U-

RL+L-RL is impacted by the noise to a greater degree, as both agents take accumulation information 

(in comparison, only the BB policy, not MP, is prone to the noise) and such inaccuracy is in effect 

at a higher frequency (every 10s for L-RL) than BB+MP (every 90s). This contrast thus highlights 

the learning robustness of U-RL+L-RL. Furthermore, notice the lane-level vehicle counts are used 

by L-RL, so additional errors on these counts (also in the form of a normal distribution) are examined 

as well. In particular, this error impacts vehicle counts on all lanes, so its magnitude is smaller than 

measurement noise. We consider combinations of noise in accumulation (from 100 to 300) and 

errors in lane-level vehicle counts (3 and 6), and two example learning curves are shown in Figure 

3(b) for combinations 100/3 and 300/6. These curves again illustrate the robustness of U-RL+L-RL. 

 

a)  b)  

Figure 3. Realized CTCs against measurement noise (a) and example learning curves (b). 
 

4     CONCLUSION 
 

This paper presents a multi-timescale reinforcement learning approach for the joint perimeter and 

signal control problem in urban networks. Using established techniques like parameter sharing and 

independent learning, the method exhibits excellent control effectiveness and robustness. This joint 

control framework holds promise for efficient urban traffic management and contributes ultimately 

to emerging intelligent transportation systems, with a learning-based design (not built upon heuristic 

rules) and comprehensive (featuring perimeter and signal control) yet fully implementable policies. 
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