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1 INTRODUCTION

Bike-sharing offers a sustainable way of mobility commonly used as a standalone active mode of
transportation or to enhance connectivity to other modes, like transit, through first- and last-mile
solutions. Bike-share systems often start as small-scale pilot projects and expand gradually in re-
sponse to growing user demand. By optimizing the design of bike-share systems, mainly through
strategic station placement, the continued growth of the network becomes more impactful.

Determining the optimal location of bike-share stations presents a challenging task in design-
ing an effective network. It involves more than just geography and requires a detailed knowledge
of decision variables that impact the network’s functionality, including the number and location
of stations, station’s capacity, and the allocation of bicycles. The placement of bike-share sta-
tions goes beyond providing accessibility; it involves analyzing bike flow and mobility patterns.
We can identify the most frequented routes by analyzing origin-destination (OD) trip data and
strategically placing stations along these paths to optimize usage. This strategic placement,
guided by OD trip analytics, is the key to enhancing the bike-share network’s efficacy, making
each station a dynamic hub that adapts to the ever-changing mobility landscape.

Research on bike-sharing location optimization highlights diverse strategies for station place-
ment, focusing primarily on accessibility (Frade & Ribeiro (2015)) while often overlooking the
network effects of ridership that necessitate advanced algorithmic approaches like Continuum
Approximation (CA). CA methods are used in terminal designs (Ouyang & Daganzo, 2006),
transit network design (Daganzo (2010), Ouyang et al. (2014)), optimizing bike-share systems
(Caicedo et al., 2023), and integrating transit and bike-share networks (Luo et al., 2021).

This study introduces a CA model aimed at optimizing the placement of bike-share sta-
tions to maximize ridership. The algorithm strategically adjusts each station’s location within
a continuous service area, where demand is spatially distributed, to align with OD patterns and
maximize network efficiency. This proposed methodology prioritizes ridership, unlike previous
studies focusing primarily on coverage. Numerical experiments demonstrate the effectiveness of
the CA algorithm, delivering near-optimal solutions that enhance bike-sharing ridership.

2 Methodology

2.1 Problem Statement

This study addresses the problem of locating a set of N bike-share stations located at X =
{x1, x2, . . . , xN} within a continuous service area S to maximize the total ridership. The origins
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and destinations are characterized by spatial density functions ΛI(x) and ΛJ(x), respectively,
for x ∈ S. Since bike-sharing services often operate in homogeneously-populated and developed
urban areas, we assume origins and destinations are independently distributed. The influence
area of station i, denoted by Ai is defined as the region that encloses the origin and destination
points closest to station i than any other station. The areas cannot become indefinitely large
because bike-share users are only willing to walk a certain distance (or time) to access each
station. We define this accessibility constraint on the system by ensuring the maximum influence
area is Amax. We define the total trip production and termination from/to station i is defined as

Pi(X) =

∫
x∈Ai

ΛI(x), (1)

and
Ti(X) =

∫
x∈Ai

ΛJ(x), (2)

respectively. We define the ridership between the station pair (i, j) by λij

(
Pi, Tj , Cij(xi, xj)

)
,

which depends on the ridership production and termination, and the impedance factor, Cij(xi, xj)
which depends on the station locations and their distance from one another specifically. We later
further explain the properties and empirical validation of the impedance function in the study.

We present the following mathematical problem to maximize the total ridership:

MaximizeX

N∑
i=1

N∑
j=1

λij

(
Pi, Tj , Cij(xi, xj)

)
(3)

s.t xi ∈ S, ∀i (4)

Ai ⊆ S, ∀i (5)

Ai ∩Aj = ∅, ∀i ̸= j (6)

|Ai| ≤ Amax, ∀i (7)

where the first two constraints ensure the stations and the influence areas are enclosed within the
service areas, respectively, the third constraint ensures the influence areas are mutually exclusive,
and the fourth constraint ensures the area of each influence area is less than the allowable limit.
We note that the final constraint stipulates that the regions are not necessarily collectively
exhaustive, especially when AmaxN ≪ |S|.

2.2 Algorithm

We use a force-based mechanism within a continuous service area S. The algorithm initiates by
defining each influence area, Ai, of station i by a “disk" (similar to Ouyang & Daganzo (2006))
of area Amax. This area is subject to three distinct repulsive or attraction forces influencing its
optimal location. We assume S is connected, which permits the free movement of a station and
its disk anywhere within S without intersecting the boundary. The forces are detailed below:

Station-to-Station Force (FSSij): The relationship between trip frequency and station
distance exhibits a log-normal distribution, as demonstrated by Toronto bike share data in Fig-
ure 1-a. This trend also appears in many other micro-mobility (bike-sharing specifically) services
and has a logical justification in that when the trip distance is too short, the users may prefer
to walk, and when it is too long, they may prefer a motorized mode. Hence, there is an optimal
inter-station distance, Dopt, that maximizes trip frequency. FSSij exerts a repulsion between
stations closer than Dopt and an attraction for those farther apart to encourage an even dis-
tribution that reflects maximum trip frequency. The force is applied to capture the impedance
relationship explained earlier in the objective function (3). The station-to-station force is math-
ematically formalized as FSSij = PiTj(

1

exp

(
−

(ln(dij)−ln(Dopt))
2

2σ2

) − 1) · sgn(dij − Dopt), where dij
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denotes the distance between two stations, Pi and Tj are respective production and termination
of station i and j (equations (1) and (2)), and σ is the standard deviation of the distribution.
The term sgn(dij −Dopt) determines the sign of the force vector, negative (repulsion) or positive
(attraction). The force is designed to move stations towards the optimal spacing, as illustrated
in Figure 1-b.

(a) (b) (c)

Figure 1 – a)Trip Frequency-Distance Distribution, b)Station-Station Force, c)Boundary Force.

Origin and Destination Force (FOi/FDi): The origin-destination (OD) densities, ΛI(x)
and ΛJ(x), apply attraction forces FOi and FDi, which seek to increase the trip production and

terminations of (1) and (2). The forces are formalized as FOi =
PO·Qβ

i
dαOi

and FDi =
TD·Qβ

i
dαDi

, where
dOi and dDi are the distances between origin and destination to station i, respectively. PO and
TD are respective origin and destination demands, and Qi represents the station’s capacity. The
exponents α and β will be determined through empirical analysis.

Boundary Force (FB): The repulsive boundary force FB occurs when the circumference of
a station’s disk intersects with the boundary of S, ensuring the station’s influence area remains
within the service area (similar to what explained in Ouyang & Daganzo (2006)). This force
increases linearly as the station approaches the boundary (Figure 1-c).

The optimization algorithm iteratively refines station placements by assessing station pro-
duction and termination and calculating resultant forces. A doubly constrained gravity model
guides the process, aiming to maximize overall system ridership.

3 Computational Example

3.1 Data

We conducted a computational example for ten bike-share stations to assess the algorithm’s
performance. We divide the service area into cells, each assigned specific origin and destination
demand values derived from density functions (similar to that explained in Li et al. (2016)).

3.2 Model Development

We conceptualize each bike-share station’s disk and cap the station-to-station force, limiting their
influence to a maximum range derived from data distribution. Calculating the resultant force
for each station, the model uses small step sizes for disk movements, denoted by µ, and assume
an adaptive step sizes that gradually decrease with the iterations, to promote swift convergence.
Station adjustments trigger recalculation and updating of the Pi and Ti values, reflecting the
coverage of their influence areas. A doubly constrained gravity model then calculates trip dis-
tributions and total ridership. If maximum ridership is not achieved, the model recalculates the
forces, relocates stations, and recalculates trip distributions and ridership, iterating this process
until an optimal configuration that maximizes overall ridership is identified.
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4 Discussion

This study introduces a continuum approximation algorithm for locating bike-share stations
aimed at ridership maximization. The algorithm adjusts each station’s location based on eval-
uated forces until optimal position is found. Unlike previous methods that mainly focused on
coverage, the proposed methodology prioritizes ridership by ensuring that the stations are placed
in locations that attract users and support them in completing their trips efficiently. The nu-
merical example validates the effectiveness of the CA algorithm. Figure 2-a illustrates the forces
that impact each station. In the beginning, as shown in Figure 2-b, stations move significantly
while searching for spots that meet the optimal distance and fulfill the demands attraction.
The Voronoi tessellation (Figure 2-c) helps investigate the changes in each station’s area over
various iterations. The observed movement patterns through the iterations show that optimal
station placement is a complex balance of inter-connectivity, geographical centrality, and prox-
imity to high-demand areas, ensuring each station enhances network cohesion. The next step
of our study is to incorporate station capacity into the optimization model and introduce a
multi-criteria objective function that emphasizes top-priority criteria such as equity and transit
integration. Additionally, the expanded numerical case study in the final paper will focus on the
city of Toronto.

(b) (c)(a)

Figure 2 – a)Forces on each station, b)Stations relocation, c)Voronoi tessellation.

References
Caicedo, Angélica, Estrada, Miquel, Medina-Tapia, Marcos, & Mayorga, Miguel. 2023. Optimizing bike

network design: A cost-effective methodology for heterogeneous travel demands using continuous ap-
proximation techniques. Transportation research part A: policy and practice, 176, 103826.

Daganzo, Carlos F. 2010. Structure of competitive transit networks. Transportation Research Part B:
Methodological, 44(4), 434–446.

Frade, Ines, & Ribeiro, Anabela. 2015. Bike-sharing stations: A maximal covering location approach.
Transportation Research Part A: Policy and Practice, 82, 216–227.

Li, Xiaopeng, Ma, Jiaqi, Cui, Jianxun, Ghiasi, Amir, & Zhou, Fang. 2016. Design framework of large-scale
one-way electric vehicle sharing systems: A continuum approximation model. Transportation Research
Part B: Methodological, 88, 21–45.

Luo, Xiaoling, Gu, Weihua, & Fan, Wenbo. 2021. Joint design of shared-bike and transit services in
corridors. Transportation Research Part C: Emerging Technologies, 132, 103366.

Ouyang, Yanfeng, & Daganzo, Carlos F. 2006. Discretization and validation of the continuum approxi-
mation scheme for terminal system design. Transportation Science, 40(1), 89–98.

Ouyang, Yanfeng, Nourbakhsh, Seyed Mohammad, & Cassidy, Michael J. 2014. Continuum approxima-
tion approach to bus network design under spatially heterogeneous demand. Transportation Research
Part B: Methodological, 68, 333–344.

TRC-30 Original abstract submittal


	 INTRODUCTION
	 Methodology
	Problem Statement
	Algorithm

	Computational Example
	Data
	Model Development

	 Discussion

