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1 INTRODUCTION

The advances in artificial intelligence have triggered consideration attention in AI-driven traffic
signal control. The initial success of Reinforcement Learning(RL)-based controllers has been al-
ready demonstrated in the field of traffic signal control (Wei et al., 2021), and recently in Transit
Signal Priority (TSP) or multimodal traffic signal control. Compared with model-based control
strategies, learning-based strategies have the advantage of dealing with uncertainties and com-
plex system dynamics but face the challenge of providing performance guarantees under state
and control constraints. Long et al. (2022) proposed a model-free Deep RL (DRL) TSP algo-
rithm using an extended Dueling Double Deep Q-network (e3DQN) algorithm with invalid action
masking (IAM) mechanism. However, the algorithm, by masking part of invalid actions based
on predefined constraints, can lead to frequent phase changes and difficulty in coordinating all
constraints simultaneously. The exploratory nature of DRL has the potential to generate haz-
ardous and risky trajectories. To mitigate this issue, a variation of the Markov decision process
(MDP), known as the constrained MDP (CMDP) (Altman, 1999), is coming to prominence. In
various research domains, the application of constrained RL using a soft constraint with dynamic
weighting has demonstrated its feasibility. The dynamic weight is treated as a Lagrangian mul-
tiplier that transforms such constrained optimization problems into equivalent non-constrained
problems (Garcıa & Fernández, 2015). Du et al. (2023) introduced a safety module that can be
integrated into action space, loss function, reward function or any combination (SafeLight-Act,
SafeLight-Loss, etc.) utilizing the aforementioned soft constraints. This constrained RL ap-
proach demonstrates its utility in enhancing traffic safety in the domain of traffic signal control.
However, to the best of our knowledge, the implementation of constrained RL in the field of TSP
remains unexplored.

In this work, we propose a constrained DRL algorithm using Dueling Double Deep Q-network,
termed c3DQN, for controlling multimodal traffic signals. This algorithm integrates the expertise
and knowledge from the traffic engineering domain into the DRL agent and takes into account
potential unsafe costs by integrating a soft constraint to the main Q-networks. This additional
constraint is to avoid hazardous emergency braking due to the problem of the yellow signal
dilemma zone, which is caused by random phase-switching actions. We construct the state space
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of the agent to effectively capture multimodal (tram, bus and car) traffic dynamic. Through
the multi-objective reward, the algorithm addresses the challenge of multiple priority request
conflicts and balances the competing goals of reducing passenger delay for public transportation
(PT) and reducing congestion for private cars.

2 METHODOLOGY

In this work, we study the control of multimodal traffic signals at an isolated urban four-leg
intersection utilizing constrained DRL. Figure 1a and 1b illustrate the configuration of the inter-
section and its signal phases following a standard four-phase configuration. We assume that all
vehicles are connected and human-driven. The kinematic state and passenger occupancy of trams
and buses can be acquired through vehicle-to-road communication, and speeds and positions of
other vehicles can be obtained through road-based LiDAR sensors.
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Figure 1 – Intersection configuration and algorithm architecture

We formulate this problem as a CMDP problem over the discrete time step t (t = 1, 2, 3 . . .).
The algorithm has five main components: state S, action A, reward R, cost C and next state S′,
which is denoted as a tuple ⟨S,A,R,C, S′⟩. The intersection is viewed as an agent responsible
for controlling the multimodal traffic signal.

Traffic dynamics at signalized intersections can be captured by private vehicular traffic state,
SV T,t; PT-specific state of buses and trams, SB,t and STr,t; and traffic signal state, PI,t. Conse-
quently, the state of the RL agent St is defined as St ≜

[
SV T,t PI,t SB,t STr,t

]
. Each phase is

assigned an action. Therefore, the action space is denoted as At ≜
[
A1,t A2,t A3,t A4,t

]
. The

reward within the DRL algorithm plays a crucial role in evaluating the performance of the previ-
ous actions. We aim to prioritize public transportation while simultaneously reducing congestion
for all cars. This involves two competing objectives: 1) promoting public transportation vehicles
via reducing their average passenger delay, RPT,t. And 2) focusing on reducing congestion for
all private cars, RV T,t. This reward is calculated based on the difference between the number
of incoming vehicles Nin,t, and the number of outgoing vehicles Nout,t across all segments. The
total reward is defined as Rt = RPT,t +RV T,t.

RPT,t = − 1

10
( ωB

∑
B

(DB,t ·Np,B,t)∑
B

Np,B,t
+ ωTr

∑
Tr

(DTr,t ·Np,Tr,t)∑
Tr

Np,Tr,t
), (1)

RV T,t = −(Nin,t −Nout,t). (2)

Respective coefficients ωB and ωTr represent weights of the average passenger delay for buses and
trams in the first reward function, which can be configured by either developers or users. Np,PT,t
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indicates the PT passenger count on board, and PT schedule delay is DPT,t. The subscript PT
can be replaced by B for bus or Tr for tram.

The exploratory nature of the DRL agent can lead to unstable traffic signal phase switches,
thereby complicating the issue of the yellow signal dilemma zone. Such randomness in signal
phase changes by the DRL agents might force drivers into a predicament of whether to perform
emergency braking to avoid running a red light, consequently increasing the risk of accidents.
Drivers might react with emergency braking due to sudden phase switches, potentially causing
rear-end collisions. Emergency braking related to the problem of the yellow signal dilemma
zone, caused by random phase-switching actions, is classified as the hazardous cost C during
the learning process. We assume that the vehicle speed on urban roads in Germany is 50 km/h
and the maximum deceleration during emergency braking is −9 m/s2. The stopping distance
can be calculated as approximately 40m using the empirical formula (0.1x)2 + 0.3x, where x is
the individual vehicle speed in km/h. Consequently, Ct = 1 when vehicles within 40m of the
stop line in the incoming lanes brake with maximum deceleration upon the phase switching from
green to yellow. Otherwise, Ct = 0 indicates that no vehicle performs emergency braking within
40m at the phase switch.

Ct =

{
1 , hazardous incidents,
0 , otherwise.

(3)

The backbone of the proposed algorithm is the Dueling Double Deep Q-network (3DQN)
(Liang et al., 2019). Compared with the policy-based DRL approaches, the value-based ap-
proaches are more effective for discrete action spaces (Yu & Sun, 2020). The proposed algorithm
consists of two components: a cost estimator QC for estimating hazardous costs, and a main Q
network for initial control policy. Both Q-networks have identical neural network architectures
(Figure 1c). To dynamically adjust the weights of the hazardous cost estimator, a Lagrangian
multiplier λ is used, which can adaptively adjust undesirable costs and transform the constrained
problem into an equivalent unconstrained problem as aforementioned. The agent selects the best
action through the subtraction of the QC value to achieve the goal of maximizing rewards while
reducing costs, A = argmax(Q−λQC). The λ is updated based on the gradient ascent with the

learning rate ζ to automatically adjust its value λ = λ0 + ζ · 1
E

E∑
1
(C −ϑ), where λ0 indicates the

initial λ, E denotes the number of episodes, ζ is the learning rate of the Lagrangian multiplier,
and ϑ demonstrates the threshold of cost.

3 EXPERIMENT AND RESULT

We evaluate the proposed algorithm c3DQN in the resulting traffic performance over 36000s
simulation time. We selected four model-free baselines, namely: ① a 3DQN agent controller
employing a hard constraint with invalid action masking (IAM) - (3DQN-Hard); ② the c3DQN
controller that lacks of complete state information (c3DQN-B); ③ an A2C agent-based controller;
and ④ a DDPG agent-based controller. Additionally, we chose a model-based baseline, namely:
⑤ a NEMA (National Electrical Manufacturers Association) controller optimized by He et al.
(2014). The corresponding experimental setups are displayed in Table 1. All experiments were
conducted in SUMO. Our proposed c3DQN is displayed as c3DQN-A in the figures.

The initial Q value was estimated to be zero. Since both rewards are always negative, the Q-
values remain negative throughout the episodes and tend to converge (Figure 2a). The resulting
traffic performance of c3DQN significantly outperforms in low and medium flow scenarios but
exhibits substantial fluctuations under high flow conditions (Figures 2b and 2c). This is because
the value-based agent may produce unstable policies with slight differences in Q-values as traffic
demand changes. The reasons for the advantage of c3DQN over the model-free baselines ① ② ③
④ are: 1) both the policy-based A2C agent and the DDPG agent are better suited for continuous
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Table 1 – Experimental setup

Metric Baseline Scenario Episode
a. Average queue length

① ② ③ ④ ⑤
0-12000s low demand

1
b. Average PT passenger delay 12000-24000s high demand

24000-36000s normal demand

c. Number of emergency braking ①
100 random demand patterns,
each for 360s, totally 36000s.

action spaces, and invalid actions can be selected during the process of categorizing probabili-
ties, which is inherent to model-free policy-based agents. 2) c3DQN-B lacks of comprehensive
state information. 3) 3DQN-Hard cannot dynamically and simultaneously accommodate all con-
straints. The MILP-optimized NEMA controller proves feasible when computational resources
are limited. In terms of reducing the number of emergency braking incidents, our algorithm
results in 48 emergency braking incidents over 36000s, which is 22 fewer than the 76 observed
incidents with the 3DQN-Hard signal controller. This difference may occur because direct ac-
tion masking can fail to adequately and simultaneously address multiple hard constraints as
their number increases. Both algorithms need to relearn policies based on new traffic demands.
Since the policies of value-based DRL agents are easily disturbed by minor Q-value changes,
neither algorithm can effectively learn to completely avoid emergency braking. However, the
policy derived from c3DQN increases stability and reliability, thereby making it more suitable
for real-world application scenarios.
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Figure 2 – Validation results for learning process and performance
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