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1 INTRODUCTION

This study delves into the mobility of inbound passengers, focusing on their travel time and
destinations. We construct a matrix that records the travel time and destination for passengers
arriving at each station during specific time slots. Using this matrix, we establish a travel-time
and destination distribution (TDD) matrix, which computes the proportion of passengers’ mo-
bility from each origin station. By quantifying the similarity of current time slot TDD with
slot-ahead, day-ahead, and week-ahead, we unveil in-depth underlying mechanisms of passen-
gers’ periodic travel patterns, revealing predictable and regular mobility behavior. Therefore, we
propose a TDD model to predict passengers’ TDD one-day ahead. By combining this prediction
with real-time passenger data from an originating station, we can accurately estimate the passen-
ger flows to other stations and the corresponding travel durations. Consequently, the short-term
passenger outflow at each destination station can be estimated. We validate our model using
actual subway passenger data and demonstrate its superior performance compared to other well-
known models, such as Auto-regressive Integrated Moving Average (ARIMA), Seasonal ARIMA
(SARIMA), and Historical Average.

The traditional ARIMA and SARIMA models usually neglected the volatility in passenger
flow influenced by uncertain real-time flow change Chen et al. (2019). In the metro ridership
prediction task, how to conduct predictions incorporating real-time information is dramatically
important Zhang et al. (2021). To capture real-time information, Pereira et al. (2015) gathers
information from the Internet to predict transport arrivals under special events scenarios. This
study introduced a groundbreaking approach for short-term outflow prediction by introducing
the TDD matrix. This matrix effectively handles real-time passenger inflow, enabling accurate
capturing of timely changes. Furthermore, by incorporating travel time as an extra dimension,
the TDD matrix enhances the metric’s value by reflecting a broader range of information regard-
ing passenger mobility.
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2 METHODOLOGY

The studied problem in this paper includes all subway lines and stations in Shenzhen Metro
Cooperation (SMC) in 2013, comprising a complete system of 5 lines and 118 stations. The
dataset utilized in this study was obtained from the Automatic Fare Collection (AFC) system
of SMC in China, covering a period of 42 days from October 14 to November 24, 2013. Detailed
description of the original AFC data, such as station names and transaction timestamps, can be
found in Tang et al. (2019).

After initial processing of the original AFC data, each data record is structured to represent
a single passenger trip based on Card ID, originating gate ("tap-in" action), destination gate
("tap-out" action), and the corresponding timestamps. The passenger data are aggregated with
a time slot of a 15-minute interval, yielding 66 time slots each day, denoted as t. We use ℓ
to represent travel time, which is the number of time slots from origin to destination. Since
no travel-time records in the collected data exceeded two hours, ℓ ∈ [0, 8]. Other notations,
including the proposed TDD matrix, are listed below:

• Passenger flow: The inflow, denoted as O(i; d, t), indicates the number of originating
passengers from Station i during Time slot t on Date d. The outflow, represented by
D(j; d, t), refers to the number of passengers destined for Station j during Time slot t on
Date d.

• OD matrix: The origin-based OD matrix, denoted with oj (i ; d , t), captures the number
of passengers who enter from Station i and exit Station j on Date d based on the entering
time t.

• Travel-time and Destination: Variable oj ℓ(i ; d , t) quantifies the number of passengers
from inflow O(i; d, t) entering Station i and exiting from Station j on Date d with travel
time ℓ.

• Proportion of Travel-time and Destination: pjℓ(i; d, t) represents the proportion of
passengers originating from Station i to Station j during Time slot t on Date d destined
with travel time ℓ, i.e., pjℓ(i; d, t) =

ojℓ(i;d,t)
O(i;d,t) .

• Travel-time and Destination Distribution Matrix: P(i; d, t) ∈ ℜn×9 denotes the
travel-time distribution of inflow passengers O(i; d, t).

The OD pair from Pingzhou (PZ) to Gaoxinyuan (GXY) attracts the highest number of
passengers during the morning hour, Figure 1 illustrates the TDDs of this OD pair for rush-hour
slots on each day of two consecutive weeks. The vertical axis represents the origin time slot, and
the horizontal axis depicts the travel time in minute with ticks of a 15-minute interval. Each
TDD distribution has a number indicating the number of passengers of the OD pair in the time
slot. This figure shows clear patterns of similarities or distinctions for week-to-week (W2W),
day-to-day (D2D), or time-slot to time-slot (T2T) repeatability, which are summarized as:

i) The W2W repeatability is obvious for the same time-slot of the day and same day of the
week. ii) The D2D repeatability is also noticeable for the same time-slot, especially for weekdays.
However, iii) The T2T repeatability varies from one time slot to the next. Rush-hour slots are
similar, but they differ significantly from the post-rush-hour slot.

To quantify these W2W, D2D, and T2T similarities, let pj(i; d, t) = vec{pj·(i; d, t)} denote
the vector of a TDD, Nt be the number of slots per day, Nd be the number of days of the data,
and Nw be the number of weeks of the data. The W2W, D2D, and T2T similarities are defined
and calculated as follows.
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Figure 1 – The distribution of trip destination-time between PZ and GXY in early morning of two
weeks (a) October 14 to October 20, and (b) October 21 to October 27. The numbers represent
the total number of passengers of the departing time slot.

1. For each day of the week, calculate the W2W similarity as∑Nw−1
w=1 p⊤

j (i, d+ 7w, t)pj(i, d+ 7w − 7, t)∑Nw−1
w=1 ∥pj(i, d+ 7w, t)∥∥pj(i, d+ 7w − 7, t)∥

2. For each day of the week, calculate the D2D similarity as∑Nw−1
w=0 p⊤

j (i, d+ 7w, t)pj(i, d+ 7w − 1, t)∑Nw−1
w=0 ∥pj(i, d+ 7w, t)∥∥pj(i, d+ 7w − 1, t)∥

where d = 0, 1, ..., 6 represents seven days of a week, t = 1, 2, ..., 66 represents time slots of
a day.

3. Calculate the T2T similarity as∑Nd
d=1 p

⊤
j (i, d, t)pj(i, d, t− 1)∑Nd

d=1 ∥pj(i, d, t)∥∥pj(i, d, t− 1)∥

for rush-hour t = 8 : 00− 8 : 45 and post rush-hour t = 8 : 45− 9 : 45.

The calculated W2W, D2D, and T2T similarities from the Shenzhen subway data show that
i) W2W and D2D similarities are much higher than the T2T similarities for all days of the week,
especially for weekdays; ii) D2D similarities on Monday are less than those on other weekdays;
and iii) T2T similarities are the least among all, with non-rush-hour similarity less than that of
the rush-hour.

Based on the preceding analysis of the subway data we propose a TDD prediction model
relying on the dominant D2D and W2W correlation in travel-time distributions as

P̂(i; d, t) = f({P(i; d− a, t)}a, {P(i; d− 7b, t)}b)
a = 1, 2, . . . , nd. b = 1, 2, . . . , nw.

(1)
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where nd and nw denote the daily and weekly look-back lengths, respectively. The function f
maps input matrices to output. The model is individually constructed for each station i at time
slot t. Since the TDD matrices in (1) are distributions with all non-negative elements, we adopt
a linear model and the following optimization problem,

P̂(i; d, t) =

nd∑
a=1

αaP(i; d− a, t) +

nw∑
b=1

βbP(i; d− 7b, t)

s.t. αa ⩾ 0, βb ⩾ 0, ∀a ∈ [1, nd], ∀b ∈ [1, nw]
nd∑
a=1

αa +

nw∑
b=1

βb = 1

(2)

where {αa} and {βb} represent the coefficients to be estimated and the last equality guarantees
that the prediction is a distribution matrix. The model (2) is effectively a weighted average of
the past TDDs where the weights are estimated for each originating station and each time slot.
As both the objective and inequality constraints are convex and the equality constraint is affine,
(2) could be solved with a convex optimization program Boyd & Vandenberghe (2004).

The model for P(i; d, t) is actually a weighted average model for day-to-day and week-to-
week relations. The slot-to-slot relation varies significantly depending on the time of the day,
and therefore is not used in the model. With the predicted P̂(i; d, t) and real-time inflow O(i; d, t),
the passenger outflows at destined stations can be estimated based on equation (3).

D(j; d, t) =
∑
i

∑
ℓ

O(i; d, t− ℓ)pjℓ(i; d, t− ℓ) (3)

3 RESULTS

The dataset is split into a training set spanning five weeks from October 14 to November 17,
and a testing set encompassing from November 18 to November 24. To evaluate the proposed
TDD model for estimating passenger flow, we present several commonly used time series models
as benchmarks, such as Auto-regressive Integrated Moving Average (ARIMA), Seasonal ARIMA
(SARIMA), and Historical Average, and assess their performance by comparing their Root Mean
Squared Error (RMSE). SARIMA demonstrates superior performance over ARIMA and Histor-
ical Average in terms of test RMSE across all stations. Hence, our focus shifts to comparing the
results between SARIMA and TDD models. Out of the 118 stations examined, the TDD model
achieves the best test RMSE results for 102 stations, accounting for 86.4% of the total. SARIMA
exhibits an average test RMSE of 25.85 across all stations, while TDD model achieves a mean
value of 24.04, showcasing an improvement of nearly 10%.
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