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1 INTRODUCTION

In recent years, the mobility-on-demand services have expanded into a market worth over $500
billion in 2021, with projections exceeding $1600 billion by 2031 (Mohnish & Sonia, 2022). Typi-
cally, these services are provided by separate fleets, either on-demand ride services for individuals
(e.g., e-hailing) or on-demand delivery services for parcels (e.g., same-day delivery). However, the
isolated operation overlooks the potential of consolidating the two types of requests, which often
come out in the same region. To capitalize on this opportunity, the concept of combined urban
transportation (CUT) has been proposed recently. The idea is to utilize a single fleet to cater to
both types of requests (Cheng et al., 2023). While CUT has the potential to optimize fleet uti-
lization, its operational success is not guaranteed considering the potential detours required for
parcel delivery during passenger trips. Research on integrated passenger-parcel transportation
systems has received much attention in recent years (Cheng et al., 2023). Examples include Li
et al. (2014), Li et al. (2016), Schlenther et al. (2020), etc. Those studies for CUT often ignored
the potential detour or restricted the detour by enforcing deterministic constraints. Passengers’
acceptance of detour, which could be uncertain in real-time operations, has not been considered.
Moreover, the solution algorithms proposed by most of the existing studies for the dynamic
CUT problem were purely reactive, without adequately considering the stochastic information
of future requests and the impact of current decisions on the future profitability.

To fill the research gaps, this study investigates a new dynamic and stochastic confirmation,
compensation, and routing problem, referred to as DCR problem. We consider a single fleet
of vehicles used to serve passenger ride requests and parcel delivery requests, which arrive dy-
namically. Each passenger/parcel should be picked up at a specified location and dropped off
at a destination before a deadline. To mitigate the negative impact of detours caused by parcel
delivery on passenger ride experience and satisfaction, we consider providing compensation for
affected passengers who are willing to accept detours during the trips. Specifically, passengers
would be asked for the acceptance of an detour option associated with a specific amount of
compensation and detour time limit. Passengers acceptance is unknown until their feedback is
received. If the detour option is accepted, the service provider will make use of the detour time
to deliver parcels and offer the compensation amount to the concerned passenger; otherwise,
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other alternative solutions will be sought. In addition to compensation decision, confirmation
and routing decisions will be jointly decided during the operation. The confirmation decision
determines whether to serve an upcoming request, whereas the routing decision confirms the se-
quence of locations to be visited by the fleet. The objective of the DCR problem is to maximize
the total profit of the service provider during the service period.

2 METHODOLOGY

2.1 MDP formulation

The DCR problem is a dynamic and stochastic problem, which can be formulated as a Markov
decision process (MDP) with five components: state variables, decision variables, exogenous
information, transition function, and objective function. Let K be the set of decision epochs.
Each epoch k ∈ K corresponds to the time point tk to make a decision triggered by the arrival of
a new request ok. The state variable Sk includes the information for decision making at epoch
k, i.e., Sk = (tk, ok,Θk), where Θk is the current routing plan of the fleet. Each element θ ∈ Θk

represents the path of an individual vehicle. The decision variables at epoch k are determined
based on state variable Sk and the feedback from passengers of ride requests at epoch k, which
involves confirmation, compensation, and routing decisions. Let xk := (ζk, τk, ηk) denote the
decision variables at epoch k, which include confirmation decision variable ζk, routing decision
variables τk, and compensation decision variables ηk. The confirmation decision variable ζk is
binary, which equals 1 if request ok, is served and 0 otherwise. Given the current routing plan Θk,
let Θτ

k denote the a set of potential routing paths for serving the requests in set Ok := Oc
k∪{ok},

where Oc
k is the set of requests confirmed to be served, but have not been completely served by

epoch k. Then τk :={τθk ∈ {0, 1}|θ ∈ Θτ
k} is defined as the corresponding path-based routing

decision variables, with τθk = 1 if path θ ∈ Θτ
k is chosen, and τθk = 0 otherwise. The exogenous

information Wk+1 is the arrival of the next new request or the termination of the operation
period. The transition function Sk+1 = F(Sk, xk,Wk+1) transfers the current state Sk into Sk+1

by decision xk and exogenous information Wk+1. The reward resulted from the decision in epoch
k is denoted by R(Sk, xk). Let π be the policy that maps a state Sk to decision xk = X π(Sk).
We can formulate the objective function as finding the policy π ∈ Π that maximizes the expected
total reward conditional on the initial state as follows:

max
π∈Π

E

{
K∑
k=0

R(Sk,X π(Sk))

∣∣∣∣S0

}
. (1)

2.2 Anticipatory policy

To efficiently solve the MDP, we propose an anticipatory policy ARCC based on approximate
dynamic programming. Specifically, a routing heuristic is first proposed to generate potential
feasible paths for serving the new request. We will then develop an anticipatory model (AM)
based on these new paths and propose a compensation strategy. In addition, a new VAF with
a slide memory is designed to learn the reward-to-go value through simulation. The proposed
ARCC is expected to generate the optimal solutions rapidly in dynamic scenarios.

Routing heuristic: We design an insertion-based routing heuristic to rapidly identify po-
tential routing plans for serving the new request. The algorithm will insert request ok into any
feasible locations along each path θ ∈ Θk to generate the set of potential paths for serving request
ok. All the newly generated paths are grouped in set Θπ

k . If there is no feasible paths for serving
the new request ok, the request will be declined directly and the current routing plan remains
unchanged.

Anticipatory model: Based on the newly generated paths in set Θπ
k and the existing paths

in set Θk, we formulate an AM to determine the approximate solution at each epoch k. The
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objective of the AM is to maximize the total of the current reward R(Sk, xk) and the approx-
imated future reward-to-go value V̂ (Sk, xk), which will be estimated by a VFA method. We
prove that the AM can be solved directly in certain cases without determining the compensation
by searching among all feasible path solutions and identify the one with the largest objective
function value fR(xk).

Compensation strategy: In the other cases that AM can not be solved directly, we will
determine the optimal compensation for each newly-generated path by maximizing the expected
anticipatory profit considering the probability of a passenger accepting the detour option. We
prove that the upper bound of the optimal solution to this maximization problem f̂ can be
calculated. Then the compensation amount is set to be λf̂ , where λ ∈ [0, 1] is a pre-specified
parameter.

Value function approximation: The ARCC requires an estimate of expected profit. To
this end, we propose a machine learning-empowered VFA to learn the value function V̂ (·) by
simulating the MDP offline. Four representative attributes are used to aggregate the sequential
and temporal information in each routing plan θ: the arrival time on the heading location, the
remaining available time after visiting all locations, the average available time to serve future
requests along θ, and the minimal available time to serve future requests along θ. Different from
conventional VFA based on lookup table, the proposed VFA employs a regression tree model
to learn V̂ (·), which avoids exponential scale creation of subsets as the dimension increases. In
addition, the prediction of regression tree may not be reliable due to the poor observations in
the early stage. We thus employ a slide memory which reserves a certain number of recent
observations for training.

3 NUMERICAL EXPERIMENTS

Table 1 – Results for Improvement in Profits

Request number Passenger request ratio Fleet size ARCC ARCC-FB ARCC-B ARC-FC ARC-M
300 0.3 3 0.66 0.46 0.37 0.52 0.43
300 0.3 5 0.46 0.31 0.25 0.30 0.37
300 0.3 7 0.19 0.10 0.18 0.17 0.12
300 0.5 3 0.77 0.70 0.42 0.63 0.63
300 0.5 5 0.46 0.43 0.34 0.36 0.28
300 0.5 7 0.13 0.10 0.04 0.06 0.04
400 0.3 3 0.68 0.49 0.42 0.57 0.41
400 0.3 5 0.59 0.34 0.33 0.37 0.39
400 0.3 7 0.45 0.22 0.37 0.24 0.31
400 0.5 3 0.88 0.79 0.44 0.71 0.75
400 0.5 5 0.66 0.40 0.51 0.47 0.48
400 0.5 7 0.36 0.23 0.19 0.32 0.19
500 0.3 3 0.77 0.44 0.40 0.45 0.54
500 0.3 5 0.61 0.17 0.47 0.31 0.27
500 0.3 7 0.56 0.37 0.40 0.39 0.36
500 0.5 3 0.88 0.82 0.51 0.80 0.59
500 0.5 5 0.81 0.76 0.49 0.71 0.55
500 0.5 7 0.59 0.37 0.58 0.55 0.40

We extensively evaluate the performance of the proposed policy in a wide range of randomly
generally instances against five benchmark policies: (i) a myopic policy (MYP-M) for CUT with
parcel delivery only when no passengers on board, which serves as the baseline for all other
policies; (ii) an anticipatory policy (ACR-M) for the same CUT service with MYP-M; (iii) an
anticipatory policy (ARCC-B) which learns the VFA via a lookup table with arrival time and
remaining available time as attributes; (iv) an anticipatory policy (ARCC-FB) that learns the
VFA in the same way as ARCC-B but with an additional attribute, average available time;
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Figure 1 – Learning process of ARCC and ARCC-OF

and (v) an anticipatory policy (ARC-FC) with a fixed compensation amount per unit detour
time. Table 1 reports the profit improvement of each policy over that of policy MYP-M for
each instance. It shows that the proposed ARCC achieves the best performance in 34 out of all
36 instances, which gains 49.4% improvement in profits on average. In addition, the ARC-M
achieves 31.2% more profits on average compared to that of MYP-M. The results demonstrate
the efficacy of anticipatory decision. Moreover, the ARC-FC achieves 35.4% improvements,
which outperforms ARCC-B and ARCC-FB with 30.0% and 33.9% improvements, respectively.
Even with an anticipatory compensation strategy, ARCC-B and ARCC-FB gain poor solution
quality compared to ARC-FC with fixed compensation strategy. The results show the significance
of design of VFA to DCR problem. We also evaluate the performance of the proposed VFA
compared with a benchmark VFA without a slide memory, referred to as ARCC-OF. Figure 1
illustrates the learning process of ARCC and ARCC-OF along the iteration of simulation. It
shows that the proposed VFA significantly outperforms the benchmark.

References
Cheng, Rong, Jiang, Yu, & Nielsen, Otto Anker. 2023. Integrated people-and-goods transportation

systems: from a literature review to a general framework for future research. Transport Reviews, 1–24.
Li, Baoxiang, Krushinsky, Dmitry, Reijers, Hajo A, & Van Woensel, Tom. 2014. The share-a-ride problem:

People and parcels sharing taxis. European Journal of Operational Research, 238(1), 31–40.
Li, Baoxiang, Krushinsky, Dmitry, Van Woensel, Tom, & Reijers, Hajo A. 2016. The share-a-ride prob-

lem with stochastic travel times and stochastic delivery locations. Transportation Research Part C:
Emerging Technologies, 67, 95–108.

Mohnish, K, & Sonia, M. 2022 (Oct). Mobility on demand market size, analysis, share, trends - 2031.
Schlenther, Tilmann, Martins-Turner, Kai, Bischoff, Joschka Felix, & Nagel, Kai. 2020. Potential of

private autonomous vehicles for parcel delivery. Transportation Research Record, 2674(11), 520–531.

Acknowledgement

The work described in this paper was fully supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 25222822).

TRC-30 Original abstract submittal


	 INTRODUCTION
	 METHODOLOGY
	MDP formulation
	Anticipatory policy

	 NUMERICAL EXPERIMENTS

