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1     INTRODUCTION 
 

Lane closures on freeways, prompted by accidents or road works, often result in lane-drop bottlenecks 

and consequent traffic congestion, causing significant delays, increased fuel consumption, and 

emissions. To alleviate the congestion, variable speed limit (VSL) based traffic control has proven 

effective in enhancing traffic efficiency and reducing emissions (Liu, et al., 2015). However, the 

installation and maintenance costs of VSL signs are high.  

 

With the development of connected vehicles (CVs) and connected automated vehicles (CAVs), the 

concept has been proposed that limited CVs/CAVs are used to harmonize vehicle speeds and regulate 

the arrival patterns at lane-drop bottlenecks on freeways under saturated traffic. Empirical data have 

validated its effectiveness (Qi, et al., 2020). However, existing studies primarily focus on formulating 

analytical models of controlling longitudinal speed profiles of CVs/CAVs assuming no lane changes 

(Piacentini, et al., 2019). Further, the interactive impacts of multiple CVs/CAVs on traffic flow are 

overlooked due to the difficulty in analytical modeling.   

 

Inspired by the successful application of deep reinforcement learning (DRL) in vehicle trajectory 

planning (Ko, et al., 2020; Jiang, et al., 2022), this study proposes a DRL-based approach to regulate 

the arrival patterns of saturated traffic flow at a lane-drop bottleneck on freeways by trajectory 

planning for limited vehicles as shown in Figure 1. Considering the higher penetration rates of CVs 

than CAVs, this study investigates the longitudinal and lateral trajectory planning for limited CVs with 

discrete speeds to improve safety, efficiency, and fuel economy of traffic flow traveling through the 

bottleneck. A DRL framework is first designed for single-vehicle control and then extended to multi-

vehicle control with the aid of multi-agent DRL. 

 

 
Figure 1– Scenario of the lane-drop freeway bottleneck 
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2     METHODOLOGY 
 

2.1  Framework 
 

The DRL learning architecture is designed as shown in Figure 2. CVs, as the agents, interact 

dynamically with the environment to explore optimal driving policies. Initially, agents may exhibit 

risky and inefficient behaviors. A pretraining process based on an offline RL algorithm is applied with 

the conservative Q-learning (CQL) algorithm (Kumar, et al., 2020). The learnt policy is then 

transferred to dynamic environment for online training with the Deep Q-Network (DQN) algorithm 

(Mnih, et al., 2015). The pretraining allows agents to learn from the empirical policies derived from 

real-world human driving data to hasten the convergence of online training. 

 

 
Figure 2 – DRL Framework 

 

The fully-cooperative setting for multi-vehicle control (Yadav, et al. 2023) is employed in the 

centralized-training-decentralized-execution (CTDE) way to extend the single-agent DRL framework 

to the multi-agent one. A portion of the parameters of the topmost layer of Q-networks are shared during 

training, enabling CVs to learn collaboratively. In decision-making, however, they can make their 

decisions independently based on their respective networks. 

 

2.2  State and action 
 

Assume vehicle states (i.e., location, speed, and acceleration) can be collected by infrastructure-based 

detectors (e.g., videos) in real time. The observation space contains the current state of each CV and the 

vehicles in front and behind it. As two-dimensional discrete actions, longitudinal speed control is 

comprised of 9 discrete levels, with the step of 0.6 m/s, and the lateral behavior includes left-changing, 

right-changing, and lane-keeping. 

 

2.3  Reward shaping 
 

To train an altruistic agent, the reward function is designed with three goals: safety, efficiency, and 

smoothness. Equation (1) indicates the safety risks caused by the agent’s unreasonable actions. 
𝑟𝑠𝑎𝑓𝑒 = −1000 ∙ 𝛿0 − 500 ∙ 𝛿𝑒𝑐 − 100 ∙ 𝑁𝑐  (1) 
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If the agent makes an invalid action (e.g., change lane to the right in the outermost lane), then 𝛿0 = 1; 

otherwise, 𝛿0 = 0. If the agent collides with others, then 𝛿𝑒𝑐 = 1; otherwise, 𝛿𝑒𝑐 = 0. Equation (2) is 

formulated to measure the operational efficiency. 

                                   

𝐸 =
3600∙∑ 𝑣𝑗𝑗

𝑙
(2) 

where 𝑙 is the control range and 𝑣𝑗 is the speed of vehicle j in the control zone. To cater to the benefits 

of individual vehicles, vehicles moving at a slow speed (e.g., 5 km/h) should be penalized. The efficiency 

part is formulated as Equation (3). 

                         
𝑟𝑒𝑓𝑓𝑖 = 𝜔1 ∙ 𝐸 − 𝜔2 ∙ 𝛿𝑣𝑖<𝑣0

− 𝜔3 ∙ 𝑁𝑣𝑗<𝑣0
(3) 

where 𝛿𝑣𝑖<𝑣0
 is a 0-1 variable that indicates whether the agent is traveling at a low speed, and 𝑁𝑣𝑗<𝑣0

 

is the total number of slow-speed vehicles. Equation (4) indicates the smoothness of traffic flow. 

𝑟𝑠𝑚𝑜𝑜 = −𝜔4 ∙ |𝑎𝑏|̅̅ ̅̅ ̅ + 𝜔5 ∙ min(𝑎𝑖 , 0) (4) 

where |𝑎𝑏|̅̅ ̅̅ ̅ denotes the average absolute value of acceleration of following vehicles, and 𝑎𝑖 denotes 

the acceleration of the agent itself. Since 𝑚𝑖𝑛(𝑎𝑖, 0) is negative or equals 0, the more intense the 

deceleration, the greater the agent is penalized. The complete reward function is shown as Equation (5). 
𝑟 = 𝑟𝑠𝑎𝑓𝑒 + 𝑟𝑒𝑓𝑓𝑖 + 𝑟𝑠𝑚𝑜𝑜 (5) 

By trial and error, the weights for each component are calibrated as: 𝜔1 = 0.2, ω2 = 10, ω3 =1, 
ω4 = 20, ω5 = 20. 

 

3     EXPERIMENT RESULTS 
 

3.1  Simulation setup 
 

To validate the effectiveness of this approach, simulation experiments in SUMO are conducted. The 

proposed reinforcement learning models are tested including the single-vehicle control (SC), the offline-

pretrained single-vehicle control (off+SC), and the multi-vehicle control (MC). The typical late merge 

(LM) control is used as the benchmark. The merging scenario at the two-lane freeway in Figure 1 is 

used. The demand levels of 1400 veh/h, 1600 veh/h, and 1800 veh/h are tested. The bottleneck capacity 

is around 1400 veh/h. The exiD dataset (Moers, et al., 2022) is used in the offline pretraining process, 

which contains real trajectories of human driven vehicles in the scenario of lane-drop freeway 

bottlenecks. 

 

3.2  Results and discussion 

 

Table 1 – Simulation results: throughput (𝑣𝑒ℎ/ℎ) and fuel consumption (𝑚𝑔/(𝑣𝑒ℎ ∙ 𝑠)) 

 

Table 1 shows the throughput and fuel consumption of the simulation experiment. In terms of throughput, 

the improvements by SC are not significant compared to LM at three demand levels. Off+SC shows 

Demand 

(veh/h) 

LM SC off+SC off+MC 

Through-

put 

Fuel 

Consump-

tion 

Through-

put 

 

Fuel 

Consump-

tion 

Through-

put 

Fuel 

Consump-

tion 

Through-

put 

Fuel 

Consump-

tion 

1400 1328 798 
1370 

(3%↑) 

780 

(2%↓) 

1471 

(11%↑) 

789 

(1%↓) 

1516 

(14%↑) 

769 

(4%↓) 

1600 1381 813 
1410 

(2%↑) 

644 

(21%↓) 

1464 

(6%↑) 

631 

(22%↓) 

1611 

(17%↑) 

653 

(20%↓) 

1800 1460 785.1 
1520 

(2%↑) 

633 

(19%↓) 

1527 

(1%↑) 

636 

(19%↓) 

1636 

(12%↑) 

649 

(17%↓) 
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excellent performance at low demand, suggesting good pretraining results. Although the improvement 

become less pronounced as demand increases, which is related to the lack of high-flow data in the exiD 

dataset, the throughput still outperforms SC without pretraining. MC demonstrates the most significant 

and stable improvement across various demand levels, indicating the model’s strong generalization 

capability. In terms of average fuel consumption, the performance under all three control methods 

improves considerably. It indicates that whilst the capacity of the bottleneck is enhanced, the overall 

traffic flow becomes smoother with overall fuel consumption reduced. It is observed that it is 

challenging for SC and off+SC to achieve significant improvements in both throughput and fuel 

consumption simultaneously. And off+MC strikes a balance between high efficiency and low energy 

consumption with the aid of the collaboration between multiple CVs. 

 

4     CONCLUSION 
 

This study proposes a DRL-based approach to regulate the arrival patterns of saturated traffic flow at a 

lane-drop bottleneck on freeways by longitudinal and lateral trajectory planning for limited CVs. The 

objective is to enhance safety, efficiency, and fuel economy. The CQL algorithm is used for offline 

pretraining to speed up the convergence of online training with DQN. The single-agent DRL framework 

is extended to the multi-agent one by parameter sharing of Q networks. Simulation results validate the 

advantages of the proposed models. 
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