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1. INTRODUCTION 
 
Understanding street-level annual average daily traffic (AADT) is important for various 
applications, such as developing air pollution and greenhouse gas emissions inventories (Ganji et 
al., 2020). However, an exhaustive collection of AADT data across a country’s road network is 
resource intensive. This often leads to a sampling approach in practice that prioritises major roads 
while underrepresenting minor roads (Department for Transport, 2022).  
 
Various studies have explored methods to predict AADT in areas that have no direct data collection 
(Mathew & Pulugurtha, 2021; Selby & Kockelman, 2013). However, achieving reliable street-level 
AADT estimates remains challenging due to factors such as complex interactions among variables, 
insufficient input data, and model scalability to large networks. Moreover, existing methods often 
fail to simultaneously address the spatial heterogeneity in relationships among variables and spatial 
autocorrelation in road traffic data, further complicating accurate predictions and robust inferences.   
 
Recent advances have been achieved in applying machine learning (ML) methods for AADT 
estimation (Ganji et al., 2020; Sfyridis & Agnolucci, 2020). ML approaches generally have 
advantages in greater flexibility in model assumptions, enhanced capability to capture complex and 
nonlinear relationships, and better model scalability for large-scale applications (Fouedjio & Klump, 
2019). However, ML algorithms do not recognise spatial context by default. Therefore, directly 
applying ML to geospatial data and using a traditional model evaluation metric may lead to biased 
results (Fouedjio & Klump, 2019).  
 
This paper aims to apply a methodology that combines ML, spatial statistics, and extensive 
geospatial data to enhance AADT estimation and the assessment of spatial predictive ML models. 
Our approach uses a lightGBM model to estimate AADT in England and Wales (EW), incorporating 
over 900 spatial features with additional variables to account for spatial autocorrelation. The Boruta 
algorithm is applied to remove redundant features, proving effective in enhancing model 
performance. Unlike traditional evaluation methods, we use a cross-validation process tailored for 
spatial models. Our study demonstrates the potential of combining ML and spatial insights to provide 
effective and efficient AADT estimates at unmeasured locations and a reliable model evaluation. 
The AADT estimates are further split by vehicle and fuel type, thereby supporting pollution and 
carbon emissions estimation and offering insights for sustainable development. 
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2. METHODOLOGY 
 

In this paper, we apply a ML framework to estimate street-level AADT in EW in 2021. The AADT 
data is obtained from open-source road traffic estimates, representing the number of vehicles passing 
through designated “count point” locations on an average day of the year (Department for Transport, 
2021). The 2021 dataset includes 19,720 count points, divided into major roads (A roads and 
motorways) and minor roads (B, C, and unclassified roads). Among them, only 20% of count points 
pertained to minor roads, while minor roads constitute over 87% of the total road length in EW 
(Department for Transport, 2021). After mapping to the Ordnance Survey Road Network, the count 
points are further divided into training and test sets by a cross-validation (CV) approach to evaluate 
the performance of our model in locations without direct data collection.  
 
2.1 Feature design and selection 
 
To construct the predictive model, we extract over 900 spatial features from publicly available 
government data. The feature design (Figure 1) mainly follows Sfyridis & Agnolucci (2020) and is 
further enhanced by including spatial lags of AADT to consider spatial autocorrelation in road 
traffic. The spatial lag for count point 𝑖 at order 𝑙 is derived as a weighted sum of AADT values at 
its nearest	𝑙 neighbours, with weights determined by a Gaussian kernel function (Liu, Kounadi & 
Zurita-Milla, 2022). Neighbour selection is determined by road class and Euclidean distance, 
considering computational efficiency and data availability. We calculate spatial lags for orders up 
to 4, noting that higher orders significantly expand the neighbourhood region.  
 
In Figure 1, we outline two approaches to assign features to count points (i.e. roads). The first 
approach derives features based on the geographical location of count points, such as features for 
accessibility to urban areas and transport facilities with various impedance functions. The second 
approach assigns off-network characteristics, such as socioeconomic factors, to roads by creating 
buffers around count points. Following Sfyridis & Agnolucci (2020), we calculate six service areas 
of varying sizes around each count point using network distance rather than conventional Euclidean 
distance to better reflect real-world conditions. Specifically, the service area of each count point at 
radius 𝑟 is derived by generating and then trimming a surrounding polygon of the roads that are 
reachable within a network distance 𝑟 from the point. This process is closely adherent to the relevant 
function in ArcGIS Pro, yet is implemented using the NetworkX and Shapely library in python to 
handle the extensive road network in our study. Note that a feature is included in the model only if 
at least 75% of the count points have valid data. 
 

 
Figure 1 –Feature design for the lightGBM model. Green text denotes feature categories, with the 

number of features shown in parentheses. Brief descriptions are provided in grey text.  

Dimension reduction is crucial in constructing high-dimensional ML models, as increased 
dimensionality of input features can compromise model accuracy, generalisation performance, and 
computational efficiency (Liu et al., 2022). In this study, we utilise the Boruta algorithm for feature 
selection. The algorithm assesses feature importance by iteratively comparing original features with 
randomly shuffled features (“shadow features”). A feature is deemed important if it consistently 
outperforms all or the majority of shadow features (Kursa & Rudnicki, 2010). Our results highlight 
the efficacy of the feature selection process in improving model performance (see Section 3).   

Location features
Rural/Urban label (1) 
Within build-up areas (1) 
Access to functional urban areas (5)
bool, access, and dist.
Access to major towns and cities (4)
bool and access 

Road features
Road attributes (6)
class, function, primary, trunk, form of 
way, and length 

Road features

Access to motorway junctions (6)

AADT 

19,616 observations

Transport features
Car ownership (42)
3 vehicle types; amount and 
percentage

Access to public trans. stations (24)
4 types: bus stop, bus & coach station, 
railway, and underground

Spatial lag 
Spatial lag of AADT (3)
3 orders of lags

Transport features
Access to ports (6)
2 weights: passenger and freight
Access to airports (6)
2 weights: passenger and freight

Socio. & demographic features
Business counts (390) 
4 industrial sectors, 
4 employment size bands; 
amount and percentage
Earnings (amount) (12) 
2 locations (residents and 
workplace)
Earnings (percentile ratios) 
(36) 2 locations, 3 ratios
(P90/10, P80/20, P75/25)

Employment (306) 
21 industrial sections, 
4 industrial sectors; amount &
percentage

Population (54) 
total, density, 3 age groups 
(amount and percentage)

Households (6) 

Rely on service areasRely on point location
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2.2 Model building and evaluation 
 
Considering the nonlinearity and complexity of the relationships among model variables, we use 
lightGBM to predict AADT. As an advanced form of gradient boosting decision trees, lightGBM 
has demonstrated better performance than similar algorithms like XGBoost in computational speed 
and memory consumption (Ke et al., 2017). We further enhance model performance by 
automatically tuning its key hyperparameters with Bayesian optimisation. To consider the 
heterogeneity in influencing factors for road traffic among different road classes, we develop 
separate models for major and minor roads. Our results show that tailored models for different 
groups of roads yield better performance compared to a single universal model (see Section 3). 
  
Evaluating spatial models with a conventional random split between training and test sets has 
demonstrated overly optimistic results due to spatial autocorrelation (Hoffimann et al., 2021). To 
assess model performance more accurately, we employ an h-block CV. We randomly divide the data 
into 10 folds and use each fold as a test set in turn. In contrast to the standard 10-fold CV, which 
uses the rest of the 9 folds as the training set, we further exclude data within a 4-step neighbouring 
radius of test data points from the training set for each test set. The model’s performance averaging 
across all test sets is then considered as its performance in locations without direct data collection. 
 
Furthermore, the output of the ML models provides AADT estimates for all motor vehicles, and the 
final step involves deriving conversion factors and applying them to the ML outputs. The conversion 
factors are determined by aggregating data from road traffic statistics and vehicle fleet composition 
projections (Department for Transport, 2021; National Atmospheric Emissions Inventory, 2023).  
 

3. RESULTS AND DISCUSSION 
 
Table 1 summarises the predictive performance across the four modelling scenarios in our study 
(with/without feature selection; universal/separate models). Optimal models for individual road 
classes show improved predictive accuracy when using feature selection and tailored models, 
especially for low-volume roads. We compare the performances of an identical model evaluated by 
distinct processes: the conventional 10-fold CV and the designated CV in our study. Our findings 
validate that conventional metrics tend to indicate more optimistic performance, especially for major 
roads, and emphasise the need for novel error estimation methods in spatial ML applications. 
 

Table 1 – Predictive Performance of Models (R-squared: %) 

Model Feature 
set 

Spatial CV (h-block) (a, b) Random CV (k-fold) (a, b) 
M 

Road 
A  

Road 
B 

Road 
C 

Road 
Unclass- 

ified 
M 

Road 
A  

Road 
B 

Road 
C 

Road 
Unclass- 

ified 

Universal 
Full 43.9 66.4 48.5 43.9 29.3 44.8 69.5 48.9 50.3 27.3 
Selected(c) 33.2 63.8 20.9 46.7 -33.7 36.2 70.0 22.1 57.6 -30.8 

Separate 
Full 43.3 66.0 46.7 57.6 48.3 50.0 68.2 46.5 57.6 48.9 
Selected(c) 47.6 64.8 49.5 58.7 49.4 58.3 71.1 49.4 59.7 50.3 

(a) R-squared is calculated at each test fold and then averaged across all folds, weighted by the total AADT of each fold.  
(b) The optimal R-squared values among the modelling scenarios are highlighted in bold for each road class. 
(c) Number of selected features: 140 in universal model; 160 for major roads and 107 for minor roads in separate models. 
 
The sample size and complexity of network relationships in our study significantly exceed those 
typically found in existing literature. Our model performance is comparable to a similar-scale study 
(Mathew & Pulugurtha, 2021), which analysed over 12,000 roads in North Carolina with various 
geospatial and statistical models. As shown in Figure 2, the majority of count points in our study 
achieve better accuracy than the best mean absolute percentage error (82%) in Mathew & Pulugurtha 
(2021). Additionally, Sfyridis & Agnolucci (2020) predicted AADT in EW for 2016 using a 
clustering algorithm to categorise roads into groups before applying ML models to each group. 
Although their model showed better performance compared to ours, their use of the AADT value of 
the roads themselves in the clustering process restricts its application in truly unmeasured locations. 
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Our study introduces a ML framework to effectively and efficiently estimate street-level AADT by 
vehicle type across extensive road networks and emphasises the importance of spatial considerations 
in ML applications. We propose future efforts to enhance road clustering using data that is available 
at both locations with and without direct data collection and to address the stochastic components of 
AADT that remain unexplained by the ML model.  
 

 
Figure 2 – Cumulative histogram of absolute percentage error at individual count points (separate 

model; with feature selection). The absolute percentage errors are aggregated by road class. 
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