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1 INTRODUCTION

On-board comfort is a strong determinant of whether travellers will choose a certain transport
mode or not for their commute. Moreover, knowing the number of passengers on-board public
transport vehicles is a piece of invaluable information for the efficient management and operation
of the network. A data source commonly used is Automatic Passenger Counting (APC) data,
but high costs of installation and maintenance lead to low numbers of vehicles being equipped
with APC devices. Technical issues might also lead to gaps in the provided datasets, which
makes the development of accurate and precise real-time predictions a particularly challenging
task. This study extends the work of Roncoli et al. (2023a,b), which proposes a method based
on Kalman filtering for estimating vehicle crowding levels, by making it applicable for complex
networks in which a station serves multiple lines. It also extends the work of Sipetas et al.
(2024) by incorporating historical information in the estimation and investigating their role
in the estimation performance. The effects of having different levels of APC availability in a
network are also investigated here. The case study is the west wing of the Helsinki commuter
train network.

2 METHODOLOGY

We design an estimation framework capable of fusing information on the vehicle schedule with
APC measurements (i.e., boarding and alighting passenger counts) from a subset of vehicles, to
derive an estimate of the passengers on-board. Dynamic models are proposed for estimating,
separately, boarding and alighting passengers, which are then employed to estimate the number
of passengers on-board and the comfort level (Chandakas, 2009).

We first present dynamical models that capture the dynamics of boarding and alighting
passengers. We assume that all passengers waiting on a platform, wi(k), will board any vehicle
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that departs from the current station i during (k − 1, k] if it arrives first at their destination
station, as follows:

bsi (k) =
∑
l∈L

[ηsi,l(k) · θsi,l(k)] · wi(k) (1)

where bsi (k) is the number of passengers boarding any train leaving station i at time t = kT ,
ηsi,l(k) equals 1 if line l departs from station i and 0 otherwise, and θsi,l(k) represents the ratio of
all passengers entering station i that will board line l during time t = kT , which is calculated as
follows:

θsi (k) =

∑
m∈Si,l

ãqm(k) · µHm,l(k)∑
l∈L

∑
m∈Si,l

ãqm(k) · µHm,l(k)
(2)

where Si,l is the set of stations that each line serves after station i, H is a pre-determined time
window in which we check which lines depart from i (competitive lines), µHm,l(k) equals 1 if line l
is the line arriving first at station m during (kT, kT +H] among the competitive lines, ãqm(k) is
the historical numbers of passengers alighting at station m during the time period [λq , (λ+1)q)
for which λq ≤ kT < (λ + 1)q, and λ equals the number of time periods of length q in which a
daily operational period is divided.

The dynamics of the state vector of the overall system evolve according to:[
wi

ei

]
(k + 1) =

[
1− ηsi,l(k) · θsi,l(k) 1

0 1

]
(k) ·

[
wi

ei

]
(k) + ξbi (k) (3)

where ei(k) is the number of passengers entering station i and ξbi (k) is zero-mean Gaussian
noise that accounts for modelling errors. Real-time APC measurements, zwi (k), and historical
measurements, zẽi (k), can be treated as noisy measurements for xi(k), as follows:[

zwi
zẽi

]
(k) =

[
βsi,l(k) · θsi,l(k) 0

0 φ
(
1− βsi,l(k)

)]xi(k) + ψw
i (k) (4)

where βsi,l(k) equals 1 if a run of line l that leaves station i is equipped with APC and 0 otherwise,
ϕ equals 1 if historical data are available and 0 otherwise, and ψw

i (k) is zero-mean Gaussian noise
accounting for measurement errors.

To estimate alighting passengers, we formulate a dynamical model for the alighting rate γsi (k),
which is defined as a station-based variable, as follows:

γsi (k) =
∑
j∈Jl

ηri,j(k)
arj(k)

pj(k)
(5)

where ηri,j(k) equals 1 if run j departs from station i and 0 otherwise, arj(k) is the number of
passengers alighting from run j and pj(k) is the number of passengers on-board run j. The
alighting rate is modelled via a random walk dynamic as follows:

γsi (k + 1) = γsi (k) + ξγi (k) (6)

where ξγi (k) is zero-mean Gaussian noise accounting for modelling errors. Real-time APC mea-
surements, zγ̄i (k), and historical measurements, zγ̃i (k), are considered as follows:[

zγi
zγ̃i

]
(k) =

[
βsi,l(k)

φ
(
1− βsi,l(k)

)] γsi (k) + ψγ
i (k) (7)

where ψγ̄
i (k) is zero-mean Gaussian noise accounting for measurement errors.

The process model (3) and measurement model (4) are used in a Kalman filter (Kalman
& Bucy, 1961) to estimate the number of passengers boarding run j, b̂rj(k), and the process
model (6) and measurement model (7) for estimating the alighting rate of run j, γ̂j(k). Finally,
the number of passengers on-board, p̂j(k + 1), is estimated as:

p̂j(k + 1) = [1− γ̂j(k)] · p̂j(k) + b̂rj(k) (8)

TRC-30 Original abstract submittal



C. Sipetas, C. Roncoli, E. Chandakas and I. Kaparias 3

0

20

40

60

0 1 2 3 4 5 6

M
A

E 
(p

ax
)

Number of historical days

MAE for passengers on-board 

direction 1

direction 2
0

20

40

60

80

0 1 2 3 4 5 6

R
M

SE
 (

p
ax

)

Number of historical days

RMSE for passengers on-board 

direction 1

direction 2

(a) (b)

Figure 1 – Estimation errors for the number of passengers on-board
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Figure 2 – Comfort level errors

3 RESULTS

The case study refers to a part of the Helsinki commuter train network, in Finland. The main
terminal is the Helsinki station and trains move in two directions (Helsinki outbound and Helsinki
inbound). Data from regular weekdays of September 2021 are considered. The APC data
availability is quite high (i.e., more than 70%) for these days.

By implementing the proposed methodology, the estimation errors for passengers on-board
are shown in Figure 1. Direction 2 (Helsinki inbound) is associated with the lowest errors both
in terms of mean average error (MAE) and root mean squared error (RMSE) when compared
with direction 1. Historical days do not improve the performance of the estimations, which can
be partly attributed to the added demand uncertainty and the different APC availability per day.
Helsinki terminal is the main demand attractor, hence it is intuitively expected and confirmed
that direction 2 has greater uncertainty regarding which line travellers will board before Helsinki
station (i.e., they will board any convenient line since all lines end in Helsinki terminal), but
lower uncertainty regarding alighting rates. The reverse holds for direction 2.

The comfort level errors for the weekday of Thursday, 23.09.2021, and both directions of
movement are shown in Figure 2. There are six comfort levels in the considered framework (i.e.,
level 1 is the least and level 6 is the most crowded), hence the comfort estimation errors range
from -5 to 5. The errors are mostly equal to 0, followed by errors equal to 1, and a very small
amount of higher errors, implying a good performance of the proposed methodology.

In order to investigate how the different levels of APC availability affect the performance of
the dynamic passenger modelling, we selected random runs with observed counts and we treated
them as non-observed. We considered the cases of 25%, 50%, and 75% APC availability and
different numbers of historical days. We repeated ten times per case. The random selection of
runs to be considered as non-observed led to different levels of errors in each case. Figure 3
shows the results and highlights that the effects of random selection are greater for lower APC
availability. Historical days again do not improve the performance of the dynamic modeling in
the investigated cases. Note that this figure is part of ongoing research.

TRC-30 Original abstract submittal



C. Sipetas, C. Roncoli, E. Chandakas and I. Kaparias 4

Er
ro

r 
(p

ax
)

Number of historical days

Passenger Error – MAE (direction 1)

Er
ro

r 
(p

ax
)

Passenger Error – MAE (direction 2)

(a) (b)

Number of historical days

Legend Legend

Figure 3 – Estimation errors for the number of passengers on-board in different cases

4 DISCUSSION

This paper presents a Kalman filtering-based framework for estimating on-board comfort levels
in the case of real-time non-exhaustive APC data. The method has been successfully validated
through application to the commuter train network of Helsinki. The results highlight the impor-
tance of accounting for demand uncertainties while developing and evaluating such methods, as
indicated by the different performance in each direction and the role of historical days. The %
APC availability is critical for the estimation performance, since each run’s information availabil-
ity contributes differently to the quality of estimations. Therefore, it is of major importance for
public transport operators to strategically select which runs to equip with APC devices. Future
work aims at extending the capabilities and accuracy of the proposed method.
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