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1 Introduction

This work introduces an on-demand multi-modal delivery framework with automated drones and
sidewalk robots on a managed 3D cyber-physical road network for urban areas (Figure 1). In this
context, a novel dynamic transform-based deep reinforcement learning approach is proposed for
network planning and vehicle routing optimization, considering weather and traffic uncertainties
and further infrastructure constraints like obstacle avoidance and vehicle operations such as
battery usage and capacity. The goal is to create a flexible, scalable and managed airspace
network adapted to city characteristics and balancing the “free flight” and “structured” concepts
in airspace design (4).

Figure 1 – 3D Road Network for Mississauga, Canada

Regarding vehicle routing, this research considers the pick-up and delivery problem with time
windows (PDPTW). Given the dynamic nature of on-demand delivery requests, assigning them
to the best available vehicle in the fleet within a limited planning horizon presents computational
challenges due to the time inefficient of traditional methods (7). Thus, this study integrates a
Graph Attention Network (GAT) and Transformer architecture to address these challenges us-
ing an end-to-end learning approach. Deep reinforcement learning (DRL), augmented with a
dynamic transformer model and a novel customized graph attention network, is utilized to solve
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PDPTW and minimize the delivery time delay. The proposed approach coordinates a multi-
modal fleet with a network on the ground and in the air, using a dual encoder architecture to
capture the embedding of both modes, along with heterogeneous attention to account for prece-
dence constraints (5) and, more importantly, a customer’s spatial and temporal correlation to
enrich node and graph context embedding for dynamic routing. A dynamic encoding mechanism
is introduced to update edges in addition to node embedding, serving as a dynamic encoder that
reflects the online routing problem and addresses on-demand delivery.

2 Methodology

The delivery comprises two unique network graphs of operation for a fleet of drones and robots
based on the road network of an urban area. The nodes are represented by a directed graph
for drone network Gd = (X,Ed), where P = {x1, . . . , xN} denotes the set of N pickup nodes
with depot, x0, and D = {xN+1, . . . , x2N} as corresponding delivery nodes. In addition, Ed =
{(i, j) | xi, xj ∈ X} denotes the set of edges connecting the locations. The same representation
is applied for the robot graph network Gr = (X,Er) with the same node but different edges.
The coordinate of the ith location, weight of the order and time window is denoted by ui, qi, and
[ei, li] respectively with qi > 0 and qi+N = −qi. Each vehicle must serve the pickup and delivery
of requests together, accounting for precedence constraints within the time window of each point;
otherwise, they get delayed, and the penalty is considered. There are Nd and N r drones and
robots correspondingly. The kth vehicle, k ∈

{
1, . . . , Nd,r

}
, has a capacity Qd,r

k and a battery
size Bd,r. If the kth vehicle is used, it departs from the depot with a sequence of locations
and returns to the depot after its final delivery or when it needs recharging. The drone and
robot networks vary by wind and congestion, respectively, meaning their impedance updates at
different times of the day. According to Figure 2, the method comprises graph attention encoding
part moving to the cooperative decoding for handling both fleets. Before the encoder, the time
and distance-based hop neighbourhood for edges are incorporated to find a spatial-temporal
correlation for aerial and terrestrial network embedding.

Figure 2 – Overview of the methodology
2.1 DRL formulation. The model’s scope is defined as the Markov decision process (MDP)
with a) States. which are defined as composed of the graph vertex state and the vehicle state,
denoted as st = {xt, vt} at step t, where xt = (u, qt, et, lt). The vehicle state vt is composed of
its load ut, battery level Et, and travelled time τ t, expressed as vt = [Et, τt, ut]. b) Actions.
at determines the node selection of the vehicle at step t. The sequence of actions generated
from the initial to the final step should be combinations of nodes starting and ending with
the depot. c) Reward. PDPTW aims to minimize fleet delay and travel time. Therefore,
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the reward function is given in R =
∑

k∈Nr∪Nd

∑
(i,j)∈N tijk +

∑
i∈P∪D α1max {ei − Tik, 0} +∑

i∈P∪D α2max {Tik − li, 0}, where tijk is time travelled by vehicle k between node i and j,
and Tik is the arrival time of the vehicle k at node i. Also, α1 and α2 are penalty factors. d)
Transition. The system state will be updated from St to St+1 based on the currently executed
action at. The dynamic features of the problem, such as vehicle load, battery level, and travelled
time, are being changed through consecutive nodes based on the vehicle’s features.
2.2 Encoder. The incorporation of attention layers builds upon the recent work by (6, 3). Two
adjacency matrices of spatial and temporal distribution are defined as Ai,j = 1 if the distance
of the two customers is close and if the late time window li of customer xi is nearest to late
time window lj of customer xj ; respectively; otherwise, Aij = 0. The spatial and temporal
hop neighbourhood for a node xi is defined by NBS

i and NBT
i , respectively, which limits the

neighbourhood in adjacency matrices with a time window and distance threshold. A broad
spectrum of customers’ time and space correlation can be found by tuning these thresholds.
First, the initial embedding for each node and both fleet edges is computed in Equation 1 and 2
through a linear layer.

h0
i =

{
BN(W 1(xi;xi+N ) + b1) , if i ∈ {1, . . . , N} ,
BN(W 2(xi) + b2) , if i ∈ {0, N + 1, . . . , 2N}

(1)

êdij = BN
(
W 3E

d
ij + b3

)
, êrij = BN

(
W 4E

r
ij + b4

)
, if i, j ∈ NBS

i ∪NBT
i (2)

where W 1, W 2 , W 3, W 4, b1, b2, b3, and b4 represents the learnable parameters and BN(.)
represent batch normalization. The graph attention network can assign different importance to
the customers within the neighbourhood through the attention mechanism (2) by computing the
pairwise attention weight aij at lth layer as in equation 3:

αℓ
ij =

exp
(
σ
(
gℓT

[
W ℓ

(
h
(ℓ−1)
i

∥∥∥h(ℓ−1)
j

∥∥∥ êij)]))∑
z∈NBS

i ∪NBT
i
exp

(
σ
(
gℓT

[
W ℓ

(
h
(ℓ−1)
i

∥∥∥h(ℓ−1)
z

∥∥∥ êiz)])) (3)

where (·)T represents transposition, ·∥· is the concatenation operation, gℓ and W ℓ are learnable
weight vectors and matrices respectively, and σ(·) is the softmax activation function. Afterwards,
we use feed-forward with a residual connection and (BN) layer followed by calculating K multi-
head attention of the weight value vector for lth layer hl

i =
∑

j∈NBS
i ∪NBT

i
aijW

V
l h

(l−1)
j as the

output of the attention mechanism to get the final and average embedding.
2.3 Decoder. In the decoder, the context embedding of each vehicle, will be aggregated by
fleet states concatenated with node embedding to get agent embedding as x

(a)
k = vk,t + W 5 ·[

h(N);v1,t;v2,t; . . . ;vK,t

]
, ∀k ∈ Nd, N r.

We define the query vector as the agent embedding x
(a)
k , key vectors and value vectors as the

customer embedding hi, and utilize the attention mechanism to compute the importance λk,i of
each customer i to agent k in uk,i = (W 6 ·x(a)

k )T · (W 7 ·hi), ∀i ∈ N, ∀k ∈ Nd, N r. Next, we
calculate the agent-customer joint information embedding as the weighted sum of value vectors
in hv,k =

∑
j∈N

e
uk,i∑

j∈N e
uk,j · Vi, ∀k ∈ Nd, N r. Furthermore, the decoding process encodes the

joint information embedding to a query. It compares it with the key of each customer to acquire
the attention coefficient, which represents the compatibility between vehicle k and customer i
at time t, in h̃k,i = (W 8 · hv,k)T · (W 9 · hi), ∀i ∈ N, ∀k ∈ Nd, N r. To guarantee that each
vehicle would not select the same node, a global mask is used to handle such situations and
other operational and delivery constraints; the masking procedure is used for both fleets in the
probability of the selecting node i, which is noted in P (i) = softmax(C · tanh

(
h̃k,i

)
), with Clip

parameter of C. As a result, a tour can be generated by vehicle-node pair selection at every step.
The output will be given to the encoder for re-encode the states to account for removing the
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visited node and re-embedding the edges states to update to features of the network; thereby, the
decoder can be influenced by a variation on network embedding at the decoding step to select
the superior pair.

3 Preliminary Results

The experiment is carried out for 10 requests, 20 nodes for pickup and delivery, where node
locations are drawn by random number from unit square [0, 1]km and time windows of nodes are
driven by Poisson distribution for evening peak hour, e.g. 5 pm. in addition to random number
from [10, 50]min based on the node. The speed of the vehicles is set as 60km/h and 10km/h
for drones and robots, respectively. The training curve for the cost for 100 epochs, and in each
epoch, 2500 batches with 512 instances is depicted in Figure 3.

The test experiment is conducted by 10,000 instances with the same distribution, and the
comparison baselines are Google OR-Tools, Lei et al. (3), and Fellek et al. (1). The test
results for the graph size of 20 with the training parameters are shown in the Table 1. Fur-
thermore, the gap denotes the average optimal gap between a result and the baseline solution,

1
Ntest

∑Ntest
i=1

L(π̂|s)−L(π|s)
L(π|s) .

4 Discussion

This study proposes a novel framework for multi-modal automated on-demand delivery in an
urban environment through fusing nodes and edges in the dynamic transformer architecture. A
parsimonious yet effective graph representation and dual re-encoding mechanism are updated
at every decoder step to deal with uncertainty within a network layer. The initial result of the
simulation of the network shows that this methodology can compete with recent work and global
solvers. Future steps involve generalization, considering more extensive networks and fleets on
the real case study of Mississauga, Canada, and network planning to reduce the computational
time and quality of the solution.
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